Chen Xipeng, Wang Guangrun, Xu Xiaogang, Torr Philip, Lin Liang
IEEE Trans Vis Comput Graph. 2025 Sep;31(9):5935-5947. doi: 10.1109/TVCG.2024.3478852.
We present a novel data-driven Parametric Linear Blend Skinning (PLBS) model meticulously crafted for generalized 3D garment dressing and animation. Previous data-driven methods are impeded by certain challenges including overreliance on human body modeling and limited adaptability across different garment shapes. Our method resolves these challenges via two goals: 1) Develop a model based on garment modeling rather than human body modeling. 2) Separately construct low-dimensional sub-spaces for modeling in-plane deformation (such as variation in garment shape and size) and out-of-plane deformation (such as deformation due to varied body size and motion). Therefore, we formulate garment deformation as a PLBS model controlled by canonical 3D garment mesh, vertex-based skinning weights and associated local patch transformation. Unlike traditional LBS models specialized for individual objects, PLBS model is capable of uniformly expressing varied garments and bodies, the in-plane deformation is encoded on the canonical 3D garment and the out-of-plane deformation is controlled by the local patch transformation. Besides, we propose novel 3D garment registration and skinning weight decomposition strategies to obtain adequate data to build PLBS model under different garment categories. Furthermore, we employ dynamic fine-tuning to complement high-frequency signals missing from LBS for unseen testing data. Experiments illustrate that our method is capable of modeling dynamics for loose-fitting garments, outperforming previous data-driven modeling methods using different sub-space modeling strategies. We showcase that our method can factorize and be generalized for varied body sizes, garment shapes, garment sizes and human motions under different garment categories.
我们提出了一种全新的数据驱动参数线性混合蒙皮(PLBS)模型,该模型是为通用的3D服装穿着和动画精心设计的。先前的数据驱动方法受到某些挑战的阻碍,包括过度依赖人体建模以及在不同服装形状上的适应性有限。我们的方法通过两个目标解决了这些挑战:1)开发一种基于服装建模而非人体建模的模型。2)分别构建低维子空间,用于对平面内变形(如服装形状和尺寸的变化)和平面外变形(如因身体尺寸和运动变化而产生的变形)进行建模。因此,我们将服装变形表述为一个由规范3D服装网格、基于顶点的蒙皮权重和相关局部面片变换控制的PLBS模型。与专门针对单个对象的传统LBS模型不同,PLBS模型能够统一表达各种服装和身体,平面内变形编码在规范3D服装上,平面外变形由局部面片变换控制。此外,我们提出了新颖的3D服装配准和蒙皮权重分解策略,以获取足够的数据来构建不同服装类别下的PLBS模型。此外,我们采用动态微调来补充LBS中未包含的高频信号,以处理未见的测试数据。实验表明,我们的方法能够对宽松服装的动力学进行建模,优于使用不同子空间建模策略的先前数据驱动建模方法。我们展示了我们的方法可以分解并推广到不同服装类别下的各种身体尺寸、服装形状、服装尺寸和人体运动。