文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

立方氧化铁纳米颗粒超粒子:合成、聚合物封装、功能化及磁性

Supraparticles from Cubic Iron Oxide Nanoparticles: Synthesis, Polymer Encapsulation, Functionalization, and Magnetic Properties.

作者信息

Klauke Lea R, Kampferbeck Michael, Holzapfel Malte, Feliu Neus, Sochor Benedikt, Koyiloth Vayalil Sarathlal, Meyer Andreas, Vossmeyer Tobias

机构信息

Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.

Center for Applied Nanotechnology (CAN), Fraunhofer Institute for Applied Polymer Research (IAP), Grindelallee 117, 20146 Hamburg, Germany.

出版信息

Langmuir. 2024 Oct 29;40(43):22762-22772. doi: 10.1021/acs.langmuir.4c02753. Epub 2024 Oct 18.


DOI:10.1021/acs.langmuir.4c02753
PMID:39423348
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11526376/
Abstract

Supraparticles (SPs) consisting of superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest for biomedical applications and magnetic separation. To enable their functionalization with biomolecules and to improve their stability in aqueous dispersion, polymer shells are grown on the SPs' surface. Robust polymer encapsulation and functionalization is achieved via atom transfer radical polymerization (ATRP), improving the reaction control compared to free radical polymerizations. This study presents the emulsion-based assembly of differently sized cubic SPIONs (12-30 nm) into SPs with diameters ranging from ∼200 to ∼400 nm using dodecyltrimethylammonium bromide (DTAB) as the surfactant. The successful formation of well-defined spherical SPs depends upon the method used for mixing the SPION dispersion with the surfactant solution and requires the precise adjustment of the surfactant concentration. After purification, the SPs are encapsulated by growing surface-grafted polystyrene shells via activators generated by electron transfer (AGET) ATRP. The polymer shell can be decorated with functional groups (azide and carboxylate) using monomer blends for the polymerization reaction. When the amount of the monomer is varied, the shell thickness as well as the interparticle distances between the encapsulated SPIONs can be tuned with nanometer-scale precision. Small-angle X-ray scattering (SAXS) reveals that cubic SPIONs form less ordered assemblies within the SPs than spherical SPIONs. As shown by vibrating sample magnetometer measurements, the encapsulated SPs feature the same superparamagnetic behavior as their SPION building blocks. The saturation magnetization ranges between 10 and 30 emu/g and depends upon the nanocubes' size and phase composition.

摘要

由超顺磁性氧化铁纳米颗粒(SPIONs)组成的超颗粒(SPs)在生物医学应用和磁分离方面具有极大的吸引力。为了使它们能够与生物分子功能化,并提高其在水分散体中的稳定性,聚合物壳层在超颗粒的表面生长。通过原子转移自由基聚合(ATRP)实现了坚固的聚合物封装和功能化,与自由基聚合相比,改善了反应控制。本研究展示了使用十二烷基三甲基溴化铵(DTAB)作为表面活性剂,将不同尺寸的立方SPIONs(12 - 30纳米)基于乳液组装成直径范围约为200至400纳米的超颗粒。定义明确的球形超颗粒的成功形成取决于将SPION分散体与表面活性剂溶液混合所使用的方法,并且需要精确调整表面活性剂浓度。纯化后,通过电子转移产生的活化剂(AGET)ATRP生长表面接枝的聚苯乙烯壳层来封装超颗粒。聚合物壳层可以使用用于聚合反应的单体共混物用官能团(叠氮化物和羧酸盐)进行修饰。当单体的量变化时,壳层厚度以及封装的SPIONs之间的颗粒间距离可以以纳米级精度进行调节。小角X射线散射(SAXS)表明,立方SPIONs在超颗粒内形成的组装体比球形SPIONs的有序程度更低。如振动样品磁强计测量所示,封装的超颗粒具有与其SPION构建块相同的超顺磁行为。饱和磁化强度在10至30 emu/g之间,并且取决于纳米立方体的尺寸和相组成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/d3f5c43a7300/la4c02753_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/898ebb0a73af/la4c02753_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/8c7bc7a43b54/la4c02753_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/69cdb577d0ef/la4c02753_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/39be15165d43/la4c02753_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/98d5a3572d09/la4c02753_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/ef3408b57605/la4c02753_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/2fe90c2b86ee/la4c02753_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/d3f5c43a7300/la4c02753_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/898ebb0a73af/la4c02753_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/8c7bc7a43b54/la4c02753_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/69cdb577d0ef/la4c02753_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/39be15165d43/la4c02753_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/98d5a3572d09/la4c02753_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/ef3408b57605/la4c02753_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/2fe90c2b86ee/la4c02753_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40da/11526376/d3f5c43a7300/la4c02753_0008.jpg

相似文献

[1]
Supraparticles from Cubic Iron Oxide Nanoparticles: Synthesis, Polymer Encapsulation, Functionalization, and Magnetic Properties.

Langmuir. 2024-10-29

[2]
Cross-Linked Polystyrene Shells Grown on Iron Oxide Nanoparticles via Surface-Grafted AGET-ATRP in Microemulsion.

Langmuir. 2019-7-2

[3]
Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.

J Vis Exp. 2019-4-30

[4]
Bifunctional nanoparticles with fluorescence and magnetism via surface-initiated AGET ATRP mediated by an iron catalyst.

Langmuir. 2011-9-15

[5]
Synthesis and Characterization of Citrate-Stabilized Gold-Coated Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications.

Molecules. 2020-9-26

[6]
Functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers and their drug release properties.

Langmuir. 2012-8-3

[7]
Supramolecular Surface Functionalization of Iron Oxide Nanoparticles with α-Cyclodextrin-Based Cationic Star Polymer for Magnetically-Enhanced Gene Delivery.

Pharmaceutics. 2021-11-6

[8]
Lipid Cubic Mesophases Combined with Superparamagnetic Iron Oxide Nanoparticles: A Hybrid Multifunctional Platform with Tunable Magnetic Properties for Nanomedical Applications.

Int J Mol Sci. 2021-8-27

[9]
Homogeneous Embedding of Magnetic Nanoparticles into Polymer Brushes during Simultaneous Surface-Initiated Polymerization.

Nanomaterials (Basel). 2019-3-19

[10]
SPION-Decorated Nanofibers by RAFT-Mediated Free Radical Emulsion Polymerization-Induced Self Assembly.

Macromol Rapid Commun. 2018-9-10

本文引用的文献

[1]
A comparison of RAFT and ATRP methods for controlled radical polymerization.

Nat Rev Chem. 2021-12

[2]
Advances in design of polymer brush functionalized inorganic nanomaterials and their applications in biomedical arena.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023

[3]
Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges.

Adv Sci (Weinh). 2022-7

[4]
Superparamagnetic Iron Oxide Nanoparticles: Cytotoxicity, Metabolism, and Cellular Behavior in Biomedicine Applications.

Int J Nanomedicine. 2021

[5]
Little Adjustments Significantly Simplify the Gram-Scale Synthesis of High-Quality Iron Oxide Nanocubes.

Langmuir. 2021-8-17

[6]
Magnetic Lateral Flow Immunoassays.

Diagnostics (Basel). 2020-5-8

[7]
Self-assembly of isotropic colloids into colloidal strings, Bernal spiral-like, and tubular clusters.

Chem Commun (Camb). 2020-5-11

[8]
Polymer-encapsulation of iron oxide clusters using macroRAFT block copolymers as stabilizers: tuning of the particle morphology and surface functionalization.

J Mater Chem B. 2020-6-10

[9]
Modulating the Mechanical Properties of Supercrystalline Nanocomposite Materials via Solvent-Ligand Interactions.

Langmuir. 2019-10-29

[10]
Surface-Initiated Atom Transfer Radical Polymerization for the Preparation of Well-Defined Organic-Inorganic Hybrid Nanomaterials.

Materials (Basel). 2019-9-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索