Klauke Lea R, Kampferbeck Michael, Holzapfel Malte, Feliu Neus, Sochor Benedikt, Koyiloth Vayalil Sarathlal, Meyer Andreas, Vossmeyer Tobias
Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
Center for Applied Nanotechnology (CAN), Fraunhofer Institute for Applied Polymer Research (IAP), Grindelallee 117, 20146 Hamburg, Germany.
Langmuir. 2024 Oct 29;40(43):22762-22772. doi: 10.1021/acs.langmuir.4c02753. Epub 2024 Oct 18.
Supraparticles (SPs) consisting of superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest for biomedical applications and magnetic separation. To enable their functionalization with biomolecules and to improve their stability in aqueous dispersion, polymer shells are grown on the SPs' surface. Robust polymer encapsulation and functionalization is achieved via atom transfer radical polymerization (ATRP), improving the reaction control compared to free radical polymerizations. This study presents the emulsion-based assembly of differently sized cubic SPIONs (12-30 nm) into SPs with diameters ranging from ∼200 to ∼400 nm using dodecyltrimethylammonium bromide (DTAB) as the surfactant. The successful formation of well-defined spherical SPs depends upon the method used for mixing the SPION dispersion with the surfactant solution and requires the precise adjustment of the surfactant concentration. After purification, the SPs are encapsulated by growing surface-grafted polystyrene shells via activators generated by electron transfer (AGET) ATRP. The polymer shell can be decorated with functional groups (azide and carboxylate) using monomer blends for the polymerization reaction. When the amount of the monomer is varied, the shell thickness as well as the interparticle distances between the encapsulated SPIONs can be tuned with nanometer-scale precision. Small-angle X-ray scattering (SAXS) reveals that cubic SPIONs form less ordered assemblies within the SPs than spherical SPIONs. As shown by vibrating sample magnetometer measurements, the encapsulated SPs feature the same superparamagnetic behavior as their SPION building blocks. The saturation magnetization ranges between 10 and 30 emu/g and depends upon the nanocubes' size and phase composition.
由超顺磁性氧化铁纳米颗粒(SPIONs)组成的超颗粒(SPs)在生物医学应用和磁分离方面具有极大的吸引力。为了使它们能够与生物分子功能化,并提高其在水分散体中的稳定性,聚合物壳层在超颗粒的表面生长。通过原子转移自由基聚合(ATRP)实现了坚固的聚合物封装和功能化,与自由基聚合相比,改善了反应控制。本研究展示了使用十二烷基三甲基溴化铵(DTAB)作为表面活性剂,将不同尺寸的立方SPIONs(12 - 30纳米)基于乳液组装成直径范围约为200至400纳米的超颗粒。定义明确的球形超颗粒的成功形成取决于将SPION分散体与表面活性剂溶液混合所使用的方法,并且需要精确调整表面活性剂浓度。纯化后,通过电子转移产生的活化剂(AGET)ATRP生长表面接枝的聚苯乙烯壳层来封装超颗粒。聚合物壳层可以使用用于聚合反应的单体共混物用官能团(叠氮化物和羧酸盐)进行修饰。当单体的量变化时,壳层厚度以及封装的SPIONs之间的颗粒间距离可以以纳米级精度进行调节。小角X射线散射(SAXS)表明,立方SPIONs在超颗粒内形成的组装体比球形SPIONs的有序程度更低。如振动样品磁强计测量所示,封装的超颗粒具有与其SPION构建块相同的超顺磁行为。饱和磁化强度在10至30 emu/g之间,并且取决于纳米立方体的尺寸和相组成。
Nanomaterials (Basel). 2019-3-19
Macromol Rapid Commun. 2018-9-10
Nat Rev Chem. 2021-12
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023
Adv Sci (Weinh). 2022-7
Diagnostics (Basel). 2020-5-8
Chem Commun (Camb). 2020-5-11