Suppr超能文献

人工智能系统评估肿瘤反应的可行性研究。

Feasibility of an artificial intelligence system for tumor response evaluation.

机构信息

Department of Radiology, Jinan Central Hospital, Shandong First Medical University, Jinan, China.

Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China.

出版信息

BMC Med Imaging. 2024 Oct 18;24(1):280. doi: 10.1186/s12880-024-01460-9.

Abstract

PURPOSE

The objective of this study was to evaluate the feasibility of using Artificial Intelligence (AI) to measure the long-diameter of tumors for evaluating treatment response.

METHODS

Our study included 48 patients with lung-specific target lesions and conducted 277 measurements. The radiologists recorded the long-diameter in axial imaging plane of the target lesions for each measurement. Meanwhile, AI software was utilized to measure the long-diameter in both the axial imaging plane and in three dimensions (3D). Statistical analyses including the Bland-Altman plot, Spearman correlation analysis, and paired t-test to ascertain the accuracy and reliability of our findings.

RESULTS

The Bland-Altman plot showed that the AI measurements had a bias of -0.28 mm and had limits of agreement ranging from - 13.78 to 13.22 mm (P = 0.497), indicating agreement with the manual measurements. However, there was no agreement between the 3D measurements and the manual measurements, with P < 0.001. The paired t-test revealed no statistically significant difference between the manual measurements and AI measurements (P = 0.497), whereas a statistically significant difference was observed between the manual measurements and 3D measurements (P < 0.001).

CONCLUSIONS

The application of AI in measuring the long-diameter of tumors had significantly improved efficiency and reduced the incidence of subjective measurement errors. This advancement facilitated more convenient and accurate tumor response evaluation.

摘要

目的

本研究旨在评估人工智能(AI)测量肿瘤长径以评估治疗反应的可行性。

方法

我们的研究纳入了 48 例具有肺部靶病灶的患者,共进行了 277 次测量。放射科医生记录了每个靶病灶轴向成像平面上的长径。同时,使用 AI 软件测量了目标病灶的轴向成像平面和三维(3D)长径。采用 Bland-Altman 图、Spearman 相关分析和配对 t 检验进行统计分析,以确定我们研究结果的准确性和可靠性。

结果

Bland-Altman 图显示,AI 测量存在 -0.28mm 的偏差,其一致性界限范围为 -13.78 至 13.22mm(P=0.497),表明与手动测量具有一致性。然而,3D 测量与手动测量之间没有一致性,P<0.001。配对 t 检验显示,手动测量与 AI 测量之间无统计学差异(P=0.497),而手动测量与 3D 测量之间存在统计学差异(P<0.001)。

结论

AI 在测量肿瘤长径方面的应用显著提高了效率,减少了主观测量误差的发生。这一进步使得肿瘤反应评估更加方便和准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eadb/11488245/d624776f465b/12880_2024_1460_Fig1_HTML.jpg

相似文献

本文引用的文献

5
Advances in oncological treatment: limitations of RECIST 1.1 criteria.肿瘤治疗的进展:RECIST 1.1标准的局限性。
Q J Nucl Med Mol Imaging. 2018 Jun;62(2):129-139. doi: 10.23736/S1824-4785.17.03038-2. Epub 2017 Nov 22.
6
Mastering the game of Go without human knowledge.无需人类知识即可掌握围棋游戏。
Nature. 2017 Oct 18;550(7676):354-359. doi: 10.1038/nature24270.
7
RECIST 1.1-Update and clarification: From the RECIST committee.RECIST 1.1更新与说明:来自RECIST委员会。
Eur J Cancer. 2016 Jul;62:132-7. doi: 10.1016/j.ejca.2016.03.081. Epub 2016 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验