Suppr超能文献

使用半自动化 CT 容积测量提高肺结节放射学报告和数据系统分类的观察者间一致性。

Improved Interobserver Agreement on Lung-RADS Classification of Solid Nodules Using Semiautomated CT Volumetry.

机构信息

From the Mallinckrodt Institute of Radiology (D.S.G., C.E.R., M.Z.) and Department of Biostatistics (L.R.), School of Medicine, Washington University, 510 S Kingshighway Blvd, St Louis, MO 63110.

出版信息

Radiology. 2020 Dec;297(3):675-684. doi: 10.1148/radiol.2020200302. Epub 2020 Sep 15.

Abstract

Background Classification of lung cancer screening CT scans depends on measurement of lung nodule size. Information about interobserver agreement is limited. Purpose To assess interobserver agreement in the measurements and American College of Radiology Lung CT Screening Reporting and Data System (Lung-RADS) classifications of solid lung nodules detected at lung cancer screening using manual measurements of average diameter and computer-aided semiautomated measurements of average diameter and volume (CT volumetry). Materials and Methods Two radiologists and one radiology resident retrospectively measured lung nodules from screening CT scans obtained between September 2016 and June 2018 with a Lung-RADS (version 1.0) classification of 2, 3, 4A, or 4B in the clinical setting. Average manual diameter and semiautomated computer-aided diameter and volume measurements were converted to the corresponding Lung-RADS categories. Interobserver agreement in raw measurements was assessed using intraclass correlation and Bland-Altman indexes, and interobserver agreement in Lung-RADS classification was assessed using bi-rater κ. Results One hundred twenty patients (mean age, 63 years ± 6 [standard deviation]; 67 women) were evaluated. All manual, semiautomated diameter, and semiautomated volume measurements were obtained by all three readers in 120 of 147 nodules (82%). Intraclass correlation coefficients were greater than or equal to 0.95 for all reader pairs using all measurement methods and were highest using volumetry. Bias and 95% limits of agreement for average diameter were smaller with semiautomated measurements than with manual measurements. κ values across all Lung-RADS classifications were greater than or equal to 0.81, with the lowest being for manual measurements and the highest being for volumetric measurements. Forty-three of 120 (36%) of the nodules were classified into a lower Lung-RADS category on the basis of volumetry compared with using manual diameter measurements by at least one reader, whereas the reverse occurred for four of 120 (3%) of the nodules. Conclusion Interobserver agreement was high with manual diameter measurements and increased with semiautomated CT volumetric measurements. Semiautomated CT volumetry enabled classification of more nodules into lower Lung CT Screening Reporting and Data System categories than manual or semiautomated diameter measurements. © RSNA, 2020 See also the editorial by Nishino in this issue.

摘要

背景 肺癌筛查 CT 扫描的分类取决于肺结节大小的测量。关于观察者间一致性的信息有限。

目的 评估使用手动平均直径测量和计算机辅助半自动平均直径和体积(CT 体绘制)测量对肺癌筛查中检测到的实性肺结节的测量值和美国放射学院肺部 CT 筛查报告和数据系统(Lung-RADS)分类的观察者间一致性。

材料与方法 两名放射科医生和一名放射科住院医师回顾性地测量了 2016 年 9 月至 2018 年 6 月间在临床环境中使用 Lung-RADS(第 1.0 版)分类为 2、3、4A 或 4B 的筛查 CT 扫描中的肺结节。将平均手动直径和半自动计算机辅助直径和体积测量值转换为相应的 Lung-RADS 类别。使用组内相关系数和 Bland-Altman 指数评估原始测量值的观察者间一致性,使用双评分者κ评估 Lung-RADS 分类的观察者间一致性。

结果 共评估了 120 例患者(平均年龄,63 岁±6[标准差];67 例女性)。所有手动、半自动直径和半自动体积测量均由 3 名读者获得,147 个结节中的 120 个(82%)。使用所有测量方法,所有读者对的组内相关系数均大于或等于 0.95,使用体积测量时最高。与手动测量相比,半自动测量的平均直径的偏倚和 95%一致性界限更小。所有 Lung-RADS 分类的κ 值均大于或等于 0.81,最低的是手动测量,最高的是体积测量。与至少一位读者的手动直径测量相比,基于体积测量,120 个结节中有 43 个(36%)被分类为较低的 Lung-RADS 类别,而在 120 个结节中有 4 个(3%)被分类为较高的 Lung-RADS 类别。

结论 手动直径测量的观察者间一致性较高,使用半自动 CT 体绘制测量时则更高。与手动或半自动直径测量相比,半自动 CT 体绘制能将更多的结节分类为较低的 Lung CT 筛查报告和数据系统类别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/234e/7706890/dc934d8960ec/radiol.2020200302.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验