Neonatal Diagnosis and Treatment Center of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, 400014, China.
The First People's Hospital Of Longquanyi District, Chengdu, 610100, China.
BMC Med Inform Decis Mak. 2024 Oct 18;24(1):304. doi: 10.1186/s12911-024-02695-w.
Determining the optimal timing of surgical intervention for Neonatal necrotizing enterocolitis (NEC) poses significant challenges. This study develops a predictive model using the long short-term memory network (LSTM) with a focal loss (FL) to identify infants at risk of developing Bell IIB + NEC early and issue timely surgical warnings.
Data from 791 neonates diagnosed with NEC are gathered from the Neonatal Intensive Care Unit (NICU), encompassing 35 selected features. Infants are categorized into those requiring surgical intervention (n = 257) and those managed medically (n = 534) based on the Mod-Bell criteria. A fivefold cross-validation approach is employed for training and testing. The LSTM algorithm is utilized to capture and utilize temporal relationships in the dataset, with FL employed as a loss function to address class imbalance. Model performance metrics include precision, recall, F1 score, and average precision (AP).
The model tested on a real dataset demonstrated high performance. Predicting surgical risk 1 day in advance achieved precision (0.913 ± 0.034), recall (0.841 ± 0.053), F1 score (0.874 ± 0.029), and AP (0.917 ± 0.025). The 2-days-in-advance predictions yielded (0.905 ± 0.036), recall (0.815 ± 0.057), F1 score (0.857 ± 0.035), and AP (0.905 ± 0.029).
The LSTM model with FL exhibits high precision and recall in forecasting the need for surgical intervention 1 or 2 days ahead. This predictive capability holds promise for enhancing infants' outcomes by facilitating timely clinical decisions.
确定新生儿坏死性小肠结肠炎(NEC)的最佳手术干预时机具有很大的挑战性。本研究使用长短期记忆网络(LSTM)和焦点损失(FL)构建预测模型,以识别有发生 Bell IIB+NEC 风险的婴儿,并及时发出手术警告。
从新生儿重症监护病房(NICU)收集了 791 名确诊为 NEC 的新生儿的数据,其中包括 35 个选定的特征。根据 Mod-Bell 标准,将婴儿分为需要手术干预(n=257)和接受药物治疗(n=534)。采用五折交叉验证方法进行训练和测试。LSTM 算法用于捕获和利用数据集的时间关系,使用 FL 作为损失函数来解决类别不平衡问题。模型性能指标包括精度、召回率、F1 分数和平均精度(AP)。
在真实数据集上进行测试的模型表现出了很高的性能。提前 1 天预测手术风险的精度为 0.913±0.034,召回率为 0.841±0.053,F1 得分为 0.874±0.029,AP 为 0.917±0.025。提前 2 天预测的精度为 0.905±0.036,召回率为 0.815±0.057,F1 得分为 0.857±0.035,AP 为 0.905±0.029。
具有 FL 的 LSTM 模型在预测 1 或 2 天内手术干预的需求方面具有较高的精度和召回率。这种预测能力有望通过促进及时的临床决策来改善婴儿的预后。