Suppr超能文献

空间效应导致电化学界面附近电对流的增强。

Steric effect induces enhancement of electroconvective flow near electrochemical interfaces.

作者信息

Chen Qing, Zhu Hehua, Wang Peng, Liu Wei

机构信息

Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science and Engineering, <a href="https://ror.org/03rc6as71">Tongji University</a>, Shanghai 201804, China.

State Key Laboratory for Disaster Reduction in Civil Engineering, <a href="https://ror.org/03rc6as71">Tongji University</a>, Shanghai 200092, China.

出版信息

Phys Rev E. 2024 Sep;110(3-2):035101. doi: 10.1103/PhysRevE.110.035101.

Abstract

Electroconvection, occurring near electrochemical interfaces, propels the movement of ions and water, leading to intricate phenomena rooted in the fine interplay between fluid, voltage, and ion. Here, neglecting ionic interactions, by incorporating the steric term into the Poisson-Nernst-Planck-Stokes coupling equation, direct numerical simulations of electroconvective vortex near nanoslot-bulk interfaces are conducted. For the steric effect, the steric number is introduced to discuss the factors and laws affecting the vortex. We illustrate the substantial enhancement of electroconvective vortex due to the steric effect of ions within the nanoslot. Upon increasing the steric number, the cation concentration in the nanoslot is enhanced, resulting in the expansion of the electric double layer (EDL). The EDLs on the walls inside the nanoslot come into contact with each other, causing the EDLs to overlap, consequently increasing the total charge within the EDLs inside the nanoslot. This EDL overlap enhances the charge density of the extended space charge layer, leading to the enhancement of the electroconvective vortex. Further, our scaling analysis, corroborated by direct numerical simulation and existing data, establishes the scaling of slip velocity, jointly regulated by the steric number and voltage difference. By modulating the membrane transport characteristics, the steric effect reduces flow structure size and flux fluctuations, which offers new perspectives for manipulating ion transport and flow instability.

摘要

发生在电化学界面附近的电对流推动离子和水的运动,导致了源于流体、电压和离子之间精细相互作用的复杂现象。在此,通过将空间位阻项纳入泊松-能斯特-普朗克-斯托克斯耦合方程,在忽略离子相互作用的情况下,对纳米狭缝-本体界面附近的电对流涡旋进行了直接数值模拟。对于空间位阻效应,引入空间位阻数来讨论影响涡旋的因素和规律。我们阐明了由于纳米狭缝内离子的空间位阻效应,电对流涡旋显著增强。随着空间位阻数的增加,纳米狭缝内的阳离子浓度升高,导致双电层(EDL)扩展。纳米狭缝内壁上的双电层相互接触,致使双电层重叠,从而增加了纳米狭缝内双电层中的总电荷。这种双电层重叠增强了扩展空间电荷层的电荷密度,进而导致电对流涡旋增强。此外,我们的标度分析得到直接数值模拟和现有数据的证实,确定了由空间位阻数和电压差共同调节的滑移速度标度。通过调节膜传输特性,空间位阻效应减小了流动结构尺寸和通量波动,这为操纵离子传输和流动不稳定性提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验