Suppr超能文献

显微镜散射分析中的从头算不确定性量化

Ab initio uncertainty quantification in scattering analysis of microscopy.

作者信息

Gu Mengyang, He Yue, Liu Xubo, Luo Yimin

机构信息

Department of Statistics and Applied Probability, <a href="https://ror.org/02t274463">University of California, Santa Barbara</a>, Santa Barbara, California 93106, USA.

Department of Mechanical Engineering and Materials Science, <a href="https://ror.org/03v76x132">Yale University</a>, New Haven, Connecticut 06511, USA.

出版信息

Phys Rev E. 2024 Sep;110(3-1):034601. doi: 10.1103/PhysRevE.110.034601.

Abstract

Estimating parameters from data is a fundamental problem in physics, customarily done by minimizing a loss function between a model and observed statistics. In scattering-based analysis, it is common to work in the reciprocal space. Researchers often employ their domain expertise to select a specific range of wave vectors for analysis, a choice that can vary depending on the specific case. We introduce another paradigm that defines a probabilistic generative model from the beginning of data processing and propagates the uncertainty for parameter estimation, termed the ab initio uncertainty quantification (AIUQ). As an illustrative example, we demonstrate this approach with differential dynamic microscopy (DDM) that extracts dynamical information through minimizing a loss function for the squared differences of the Fourier-transformed intensities, at a selected range of wave vectors. We first show that the conventional way of estimation in DDM is equivalent to fitting a temporal variogram in the reciprocal space using a latent factor model as the generative model. Then we derive the maximum marginal likelihood estimator, which optimally weighs the information at all wave vectors, therefore eliminating the need to select the range of wave vectors. Furthermore, we substantially reduce the computational cost of computing the likelihood function without approximation, by utilizing the generalized Schur algorithm for Toeplitz covariances. Simulated studies of a wide range of dynamical systems validate that the AIUQ method improves estimation accuracy and enables model selection with automated analysis. The utility of AIUQ is also demonstrated by three distinct sets of experiments: first in an isotropic Newtonian fluid, pushing limits of optically dense systems compared to multiple particle tracking; next in a system undergoing a sol-gel transition, automating the determination of gelling points and critical exponent; and lastly, in discerning anisotropic diffusive behavior of colloids in a liquid crystal. These studies demonstrate that the new approach does not require manually selecting the wave vector range and enables automated analysis.

摘要

从数据中估计参数是物理学中的一个基本问题,通常通过最小化模型与观测统计量之间的损失函数来完成。在基于散射的分析中,在倒易空间中进行工作很常见。研究人员通常利用其领域专业知识来选择特定的波矢范围进行分析,这种选择可能因具体情况而异。我们引入了另一种范式,该范式从数据处理开始就定义一个概率生成模型,并传播用于参数估计的不确定性,称为从头算不确定性量化(AIUQ)。作为一个说明性示例,我们用差分动态显微镜(DDM)展示了这种方法,该方法通过在选定的波矢范围内最小化傅里叶变换强度的平方差的损失函数来提取动态信息。我们首先表明,DDM中的传统估计方法等同于使用潜在因子模型作为生成模型在倒易空间中拟合时间变差函数。然后我们推导了最大边际似然估计器,它对所有波矢处的信息进行最优加权,因此无需选择波矢范围。此外,我们通过利用针对Toeplitz协方差的广义Schur算法,在不进行近似的情况下大幅降低了计算似然函数的计算成本。对各种动态系统的模拟研究验证了AIUQ方法提高了估计精度,并能够通过自动分析进行模型选择。AIUQ的实用性还通过三组不同的实验得到了证明:首先是在各向同性牛顿流体中,与多粒子跟踪相比,挑战了光学密集系统的极限;其次是在经历溶胶 - 凝胶转变的系统中,自动确定胶凝点和临界指数;最后是在辨别液晶中胶体的各向异性扩散行为。这些研究表明,新方法不需要手动选择波矢范围,并能够进行自动分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验