Suppr超能文献

尖峰神经元网络群体动力学的罗塞塔石。

Rosetta stone for the population dynamics of spiking neuron networks.

机构信息

National Center for Radioprotection and Computational Physics, <a href="https://ror.org/02hssy432">Istituto Superiore di Sanità</a>, 00169 Roma, Italy and PhD Program in Physics, "Tor Vergata" <a href="https://ror.org/02p77k626">University of Rome</a>, 00133 Roma, Italy.

National Center for Radioprotection and Computational Physics, <a href="https://ror.org/02hssy432">Istituto Superiore di Sanità</a>, 00169 Roma, Italy.

出版信息

Phys Rev E. 2024 Sep;110(3-1):034303. doi: 10.1103/PhysRevE.110.034303.

Abstract

Populations of spiking neuron models have densities of their microscopic variables (e.g., single-cell membrane potentials) whose evolution fully capture the collective dynamics of biological networks, even outside equilibrium. Despite its general applicability, the Fokker-Planck equation governing such evolution is mainly studied within the borders of the linear response theory, although alternative spectral expansion approaches offer some advantages in the study of the out-of-equilibrium dynamics. This is mainly due to the difficulty in computing the state-dependent coefficients of the expanded system of differential equations. Here, we address this issue by deriving analytic expressions for such coefficients by pairing perturbative solutions of the Fokker-Planck approach with their counterparts from the spectral expansion. A tight relationship emerges between several of these coefficients and the Laplace transform of the interspike interval density (i.e., the distribution of first-passage times). "Coefficients" like the current-to-rate gain function, the eigenvalues of the Fokker-Planck operator and its eigenfunctions at the boundaries are derived without resorting to integral expressions. For the leaky integrate-and-fire neurons, the coupling terms between stationary and nonstationary modes are also worked out paving the way to accurately characterize the critical points and the relaxation timescales in networks of interacting populations.

摘要

尖峰神经元模型的种群具有其微观变量(例如单细胞膜电位)的密度,其演化完全捕捉了生物网络的集体动力学,即使在非平衡状态下也是如此。尽管具有普遍适用性,但支配这种演化的福克-普朗克方程主要在线性响应理论的范围内进行研究,尽管替代的谱展开方法在研究非平衡动力学方面具有一些优势。这主要是由于计算展开微分方程组的状态相关系数的困难。在这里,我们通过将福克-普朗克方法的微扰解与谱展开的对应解配对,为这些系数导出解析表达式来解决这个问题。这些系数中的几个与尖峰间隔密度的拉普拉斯变换(即首次通过时间分布)之间存在紧密关系。无需诉诸积分表达式,即可推导出类似于电流-率增益函数、福克-普朗克算子的特征值及其边界上的特征函数等“系数”。对于泄漏积分和点火神经元,还推导出了稳态和非稳态模式之间的耦合项,为准确刻画相互作用种群网络中的临界点和弛豫时间尺度铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验