Suppr超能文献

有限大小的尖峰神经元网络的自洽随机动力学。

Self-Consistent Stochastic Dynamics for Finite-Size Networks of Spiking Neurons.

机构信息

Natl. Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità, 00161 Roma, Italy.

PhD Program in Physics, Dept. of Physics, "Tor Vergata" University of Rome, 00133 Roma, Italy.

出版信息

Phys Rev Lett. 2023 Mar 3;130(9):097402. doi: 10.1103/PhysRevLett.130.097402.

Abstract

Despite the huge number of neurons composing a brain network, ongoing activity of local cell assemblies is intrinsically stochastic. Fluctuations in their instantaneous rate of spike firing ν(t) scale with the size of the assembly and persist in isolated networks, i.e., in the absence of external sources of noise. Although deterministic chaos due to the quenched disorder of the synaptic couplings underlies this seemingly stochastic dynamics, an effective theory for the network dynamics of a finite assembly of spiking neurons is lacking. Here, we fill this gap by extending the so-called population density approach including an activity- and size-dependent stochastic source in the Fokker-Planck equation for the membrane potential density. The finite-size noise embedded in this stochastic partial derivative equation is analytically characterized leading to a self-consistent and nonperturbative description of ν(t) valid for a wide class of spiking neuron networks. Power spectra of ν(t) are found in excellent agreement with those from detailed simulations both in the linear regime and across a synchronization phase transition, when a size-dependent smearing of the critical dynamics emerges.

摘要

尽管构成大脑网络的神经元数量巨大,但局部细胞集合体的持续活动本质上是随机的。它们的瞬时尖峰放电率 ν(t) 的波动与集合体的大小成正比,并在孤立的网络中持续存在,即在没有外部噪声源的情况下。尽管由于突触耦合的淬火无序导致了这种看似随机的动力学,但对于有限的尖峰神经元网络的网络动力学,仍然缺乏有效的理论。在这里,我们通过扩展所谓的种群密度方法来填补这一空白,该方法在膜电位密度的福克-普朗克方程中包括一个与活动和大小相关的随机源。在这个随机偏微分方程中嵌入的有限大小噪声被分析地描述出来,从而得到了一个对广泛的尖峰神经元网络有效的自洽和非微扰的 ν(t) 描述。 ν(t) 的功率谱在线性和同步相变范围内都与详细模拟的结果非常吻合,在同步相变中,关键动力学的大小依赖性平滑出现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验