Duan Hui, Wang Changhong, Zhang Xu-Sheng, Fu Jiamin, Li Weihan, Wan Jing, Yu Ruizhi, Fan Min, Ren Fucheng, Wang Shuo, Zheng Matthew, Li Xiaona, Liang Jianwen, Wen Rui, Xin Sen, Guo Yu-Guo, Sun Xueliang
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada.
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.
J Am Chem Soc. 2024 Oct 30;146(43):29335-29343. doi: 10.1021/jacs.4c06498. Epub 2024 Oct 19.
LiCl is a promising solid electrolyte, providing it possesses high ionic conductivity. Numerous efforts have been made to enhance its ionic conductivity through aliovalent doping. However, aliovalent substitution changes the intrinsic structure of LiCl, compromising its cost-effectiveness and electrochemical stability. Here, we report nanocrystalline LiCl embedded in amorphous AlOCl compounds with a heterogeneous structure to enhance its ionic conductivity. Nanocrystallization enlarges the LiCl unit cell, while amorphization facilitates interfacial ion transport. As a result, the amorphous AlOCl-modified LiCl nanocrystal (AlOCl-nanoLiCl) demonstrates a high ionic conductivity of 1.02 mS cm, which is 5 orders of magnitude higher than that of LiCl. Additionally, it exhibits high oxidative stability, low cost ($19.87 US kg), and low Young's modulus (2-3 GPa). When AlOCl-nanoLiCl is coupled with Li-rich cathodes (LiMnNiCoO, 4.8 V vs Li/Li), all-solid-state batteries exhibit remarkable long-term cycling stability (>1000 cycles). This work presents a novel strategy to enhance the ionic conductivity of alkaline chlorides without compromising their intrinsic advantages.
氯化锂是一种很有前景的固体电解质,前提是它具有高离子电导率。人们已经做出了许多努力,通过异价掺杂来提高其离子电导率。然而,异价取代改变了氯化锂的固有结构,损害了其成本效益和电化学稳定性。在此,我们报道了嵌入具有异质结构的非晶态氯氧化铝化合物中的纳米晶氯化锂,以提高其离子电导率。纳米晶化扩大了氯化锂的晶胞,而非晶化则促进了界面离子传输。结果,非晶态氯氧化铝改性的氯化锂纳米晶体(AlOCl-纳米LiCl)表现出1.02 mS cm的高离子电导率,比氯化锂高5个数量级。此外,它还具有高氧化稳定性、低成本(19.87美元/千克)和低杨氏模量(2-3 GPa)。当AlOCl-纳米LiCl与富锂阴极(LiMnNiCoO,相对于Li/Li为4.8 V)耦合时,全固态电池表现出显著的长期循环稳定性(>1000次循环)。这项工作提出了一种在不损害碱性氯化物固有优势的情况下提高其离子电导率的新策略。