Suppr超能文献

长骨测量与身高之间关系的研究:对亚成年人骨骼身高估计的启示

An investigation of the relationship between long bone measurements and stature: Implications for estimating skeletal stature in subadults.

作者信息

Chu Elaine Y, Stull Kyra E

机构信息

Department of Anthropology, Texas State University, San Marcos, TX, USA.

Department of Anthropology, University of Nevada, Reno, Reno, NV, USA.

出版信息

Int J Legal Med. 2025 Jan;139(1):441-453. doi: 10.1007/s00414-024-03336-7. Epub 2024 Oct 19.

Abstract

The present study introduces new regression formulae that address several challenges of current subadult stature estimation methods by 1) using a large, contemporary, cross-sectional sample of subadult skeletal remains; 2) generating regression models using both lengths and breadths; 3) utilizing both linear and nonlinear regression models to accommodate the nonlinear shape of long bone growth; and 4) providing usable prediction intervals for estimating stature. Eighteen long bone measurements, stature, and age were collected from computed tomography images for a sample of individuals (n = 990) between birth and 20 years from the United States. The bivariate relationship between long bone measurements and stature was modeled using linear and nonlinear methods on an 80% training sample and evaluated on a 20% testing sample. Equations were generated using pooled-sex samples. Goodness of fit was evaluated using Kolmogorov-Smirnov tests and mean absolute deviation (MAD). Accuracy and precision were quantified using percent testing accuracy and Bland-Altman plots. In total, 38 stature estimation equations were created and evaluated, all achieving testing accuracies greater than 90%. Nonlinear models generated better fits compared to linear counterparts and generally produced smaller MAD (3.65 - 15.90cm). Length models generally performed better than breadth models, and a mixture of linear and nonlinear methods resulted in highest testing accuracies. Model performance was not biased by sex, age, or measurement type. A freely available, online graphical user interface is provided for immediate use of the models by practitioners in forensic anthropology and will be expanded to include bioarchaeological contexts in the future.

摘要

本研究引入了新的回归公式,通过以下方式应对当前亚成人身高估计方法的若干挑战:1)使用大量当代亚成人骨骼遗骸的横断面样本;2)利用长度和宽度生成回归模型;3)同时使用线性和非线性回归模型以适应长骨生长的非线性形状;4)提供用于估计身高的可用预测区间。从美国出生至20岁的个体样本(n = 990)的计算机断层扫描图像中收集了18项长骨测量数据、身高和年龄。在80%的训练样本上使用线性和非线性方法对长骨测量数据与身高之间的双变量关系进行建模,并在20%的测试样本上进行评估。使用合并性别的样本生成方程。使用Kolmogorov-Smirnov检验和平均绝对偏差(MAD)评估拟合优度。使用测试准确率百分比和Bland-Altman图对准确性和精密度进行量化。总共创建并评估了38个身高估计方程,所有方程的测试准确率均大于90%。与线性模型相比,非线性模型拟合效果更好,并且通常产生更小的MAD(3.65 - 15.90厘米)。长度模型通常比宽度模型表现更好,线性和非线性方法的混合产生了最高的测试准确率。模型性能不受性别、年龄或测量类型的影响。提供了一个免费的在线图形用户界面,供法医人类学从业者立即使用这些模型,并且未来将扩展到包括生物考古学背景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4481/11732921/90e5f88e7433/414_2024_3336_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验