Suppr超能文献

多基因风险评分估计的方法学基础:全面综述。

Methodologies underpinning polygenic risk scores estimation: a comprehensive overview.

机构信息

Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.

Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa.

出版信息

Hum Genet. 2024 Nov;143(11):1265-1280. doi: 10.1007/s00439-024-02710-0. Epub 2024 Oct 19.

Abstract

Polygenic risk scores (PRS) have emerged as a promising tool for predicting disease risk and treatment outcomes using genomic data. Thousands of genome-wide association studies (GWAS), primarily involving populations of European ancestry, have supported the development of PRS models. However, these models have not been adequately evaluated in non-European populations, raising concerns about their clinical validity and predictive power across diverse groups. Addressing this issue requires developing novel risk prediction frameworks that leverage genetic characteristics across diverse populations, considering host-microbiome interactions and a broad range of health measures. One of the key aspects in evaluating PRS is understanding the strengths and limitations of various methods for constructing them. In this review, we analyze strengths and limitations of different methods for constructing PRS, including traditional weighted approaches and new methods such as Bayesian and Frequentist penalized regression approaches. Finally, we summarize recent advances in PRS calculation methods development, and highlight key areas for future research, including development of models robust across diverse populations by underlining the complex interplay between genetic variants across diverse ancestral backgrounds in disease risk as well as treatment response prediction. PRS hold great promise for improving disease risk prediction and personalized medicine; therefore, their implementation must be guided by careful consideration of their limitations, biases, and ethical implications to ensure that they are used in a fair, equitable, and responsible manner.

摘要

多基因风险评分(PRS)已成为利用基因组数据预测疾病风险和治疗结果的一种有前途的工具。数千项全基因组关联研究(GWAS)主要涉及欧洲血统的人群,支持了 PRS 模型的发展。然而,这些模型在非欧洲人群中尚未得到充分评估,引起了人们对其在不同人群中临床有效性和预测能力的担忧。解决这个问题需要开发新的风险预测框架,利用不同人群的遗传特征,考虑宿主-微生物组相互作用和广泛的健康指标。评估 PRS 的一个关键方面是了解构建它们的各种方法的优缺点。在这篇综述中,我们分析了构建 PRS 的不同方法的优缺点,包括传统的加权方法和新的方法,如贝叶斯和频率论惩罚回归方法。最后,我们总结了 PRS 计算方法发展的最新进展,并强调了未来研究的关键领域,包括通过强调不同祖先背景下遗传变异在疾病风险以及治疗反应预测中的复杂相互作用,开发适用于不同人群的稳健模型。PRS 为改善疾病风险预测和个性化医学提供了巨大的前景;因此,在实施时必须仔细考虑其局限性、偏差和伦理影响,以确保以公平、公正和负责任的方式使用它们。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/694d/11522080/c9092c2d8d98/439_2024_2710_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验