Suppr超能文献

基于机器学习的化学物质对大鼠和人细胞色素 P450s 抑制活性的预测。

Machine Learning-Based Prediction of the Inhibitory Activity of Chemical Substances Against Rat and Human Cytochrome P450s.

机构信息

Department of Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 4678603, Japan.

Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 4228526, Japan.

出版信息

Chem Res Toxicol. 2024 Nov 18;37(11):1843-1850. doi: 10.1021/acs.chemrestox.4c00168. Epub 2024 Oct 20.

Abstract

The prediction of cytochrome P450 inhibition by a computational (quantitative) structure-activity relationship approach using chemical structure information and machine learning would be useful for toxicity research as a simple and rapid tool. However, there are few models focusing on the species differences between rat and human in the P450s inhibition. This study aimed to establish models to classify chemical substances as inhibitors or non-inhibitors of various rat and human P450s, using only molecular descriptors. Using the in-house test results from our experiments, we used 326 substances for model construction and internal validation data. Apart from the 326 substances, 60 substances were used as external validation data set. We focused on seven rat P450s (CYP1A1, CYP1A2, CYP2B1, CYP2C6, CYP2D1, CYP2E1, and CYP3A2) and 11 human P450s (CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4). Most of the models established using XGBoost showed an area under the receiver operating characteristic curve (ROC-AUC) of 0.8 or more in the internal validation. When we set an applicability domain for the models and confirmed their generalization performance through external validation, most of the models showed an ROC-AUC of 0.7 or more. Interestingly, for CYP1A1 and CYP1A2, we discovered that a human P450 inhibitory activity model can predict rat P450 inhibitory activity and vice versa. These models are the first attempts to predict inhibitory activity against a wide variety of P450s in both rats and humans using chemical structure information. Our experimental results and models would be helpful to support information for species similarities and differences in chemical-induced toxicity.

摘要

使用化学结构信息和机器学习的计算(定量)构效关系方法预测细胞色素 P450 抑制作用将是一种有用的毒性研究工具,因为它简单且快速。然而,在 P450 抑制作用方面,针对大鼠和人类之间物种差异的模型很少。本研究旨在建立仅使用分子描述符即可将化学物质分类为各种大鼠和人类 P450 抑制剂或非抑制剂的模型。利用我们实验的内部测试结果,我们使用 326 种物质进行模型构建和内部验证数据。除了 326 种物质外,还使用了 60 种物质作为外部验证数据集。我们重点研究了七种大鼠 P450(CYP1A1、CYP1A2、CYP2B1、CYP2C6、CYP2D1、CYP2E1 和 CYP3A2)和 11 种人类 P450(CYP1A1、CYP1A2、CYP1B1、CYP2A6、CYP2B6、CYP2C8、CYP2C9、CYP2C19、CYP2D6、CYP2E1 和 CYP3A4)。使用 XGBoost 建立的大多数模型在内部验证中显示出 0.8 或更高的接收者操作特征曲线(ROC-AUC)。当我们为模型设置适用性域并通过外部验证确认其泛化性能时,大多数模型显示出 0.7 或更高的 ROC-AUC。有趣的是,对于 CYP1A1 和 CYP1A2,我们发现人类 P450 抑制活性模型可以预测大鼠 P450 抑制活性,反之亦然。这些模型是首次尝试使用化学结构信息预测大鼠和人类中广泛的 P450 抑制活性。我们的实验结果和模型将有助于支持有关化学诱导毒性中物种相似性和差异性的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3f3/11577419/e833eaeeb091/tx4c00168_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验