Laboratorio Nacional de Nano y Biomateriales. Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Mérida, Mexico.
Laboratorio de Nanotecnología, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán, Jalpa de Méndez, Cunduacán, Mexico; Laboratorio de Biotecnología, Universidad Politécnica del Centro, Carretera Federal, Villahermosa, Mexico.
Chemosphere. 2024 Nov;367:143577. doi: 10.1016/j.chemosphere.2024.143577. Epub 2024 Oct 18.
The widespread use of antibiotics has increased their presence in wastewater, largely due to inadequate removal by conventional treatment methods. This highlights a critical need for effective degradation strategies to mitigate environmental and public health risks. This study reports the photocatalytic degradation of amoxicillin (AMX) using calcium zinc hydroxide dihydrate [CaZn(OH)·2HO] (CZ) and zinc oxide (ZnO) nanoparticles (NPs) synthesized by different routes. X-ray diffraction results confirmed the formation of CZ NPs with an 81-95% crystalline phase, while ZnO NPs present a single crystalline phase. The photolysis of AMX under UV-A light (365 nm) was strongly pH-dependent, with degradation rates of 34.7, 5.7, and 4.2% observed at pH 3, 5, and 13, respectively. Maximum adsorption occurred at pH 3, with ZnO achieving 63-83.2% AMX removal and 23.5-47.1% in the case of CZ. The highest overall AMX removal was observed at pH 3, where adsorption dominated the photocatalytic process for both CZ and ZnO. At pH 5 and 13, degradation was primarily driven by photocatalysis in CZ materials, particularly CZ-HT and CZ-SG, while adsorption remained predominant in ZnO. Proton nuclear magnetic resonance analysis indicates benzene ring cleavage in AMX photodegraded by CZ materials. Furthermore, the residues of photodegraded AMX by CZ materials lost antimicrobial activity against Gram-positive and Gram-negative bacteria. Additionally, the reuse of NPs over four cycles maintained consistent degradation performance, highlighting their potential for repeated applications. The comparative analysis of CZ and ZnO NPs superior photocatalytic efficiency of CZ in degrading AMX. This efficiency, along with its potential for repeated use, establish CZ as a promising material for environmental applications aimed at reducing antibiotic contamination and the associated risks of resistance development.
抗生素的广泛使用导致其在废水中的存在增加,主要是由于传统处理方法不能有效去除。这突出表明需要采取有效的降解策略来减轻环境和公共卫生风险。本研究报告了使用钙锌水合氢氧化物[CaZn(OH)·2HO](CZ)和氧化锌(ZnO)纳米粒子(NPs)通过不同途径合成的光催化降解阿莫西林(AMX)。X 射线衍射结果证实了 CZ NPs 的形成,具有 81-95%的结晶相,而 ZnO NPs 呈现单一结晶相。在 UV-A 光(365nm)下,AMX 的光解强烈依赖于 pH 值,在 pH 值为 3、5 和 13 时,降解率分别为 34.7、5.7 和 4.2%。最大吸附发生在 pH 3 时,其中 ZnO 实现了 63-83.2%的 AMX 去除率,CZ 的去除率为 23.5-47.1%。在 pH 3 时观察到 AMX 的总去除率最高,在这种情况下,吸附在 CZ 和 ZnO 的光催化过程中起主导作用。在 pH 5 和 13 时,降解主要由 CZ 材料的光催化驱动,特别是 CZ-HT 和 CZ-SG,而吸附在 ZnO 中仍然占主导地位。质子核磁共振分析表明,AMX 在 CZ 材料光降解过程中发生了苯环断裂。此外,CZ 材料光降解 AMX 的残留物质失去了对革兰氏阳性和革兰氏阴性细菌的抗菌活性。此外,NP 重复使用四周期后仍保持一致的降解性能,表明其具有重复应用的潜力。CZ 和 ZnO NPs 的比较分析表明,CZ 在降解 AMX 方面具有更高的光催化效率。这种效率及其重复使用的潜力使 CZ 成为一种有前途的环境应用材料,旨在减少抗生素污染和相关的耐药性发展风险。