Suppr超能文献

Classical conditioning of tone-signaled bradycardia modifies 2-deoxyglucose uptake patterns in cortex, thalamus, habenula, caudate-putamen and hippocampal formation.

作者信息

Gonzalez-Lima F, Scheich H

出版信息

Brain Res. 1986 Jan 22;363(2):239-56. doi: 10.1016/0006-8993(86)91009-7.

Abstract

The 2-[14C]deoxyglucose (2-DG) autoradiographic method was used to map metabolic activity in all telencephalic and diencephalic structures of the rat brain during and after classical conditioning. A trial was made of a 4-5 KHz frequency modulated tone (CS) paired with midbrain reticular stimulation (US). The unconditioned response was a rapid bradycardia elicited by the US. Alert rats were injected with 2-DG, placed in a sound-proof chamber, and subjected during 90 min to a given treatment: (1) the CS before conditioning, (2) the US alone, (3) the paired CS-US (acquisition), (4) the CS after conditioning (extinction), (5) the US prior to the CS (sensitization), (6) the unpaired CS-US (pseudoconditioning), (7) the CS after pseudoconditioning and (8) no stimulation. The prefrontal cortex showed discrete regions with enhanced 2-DG uptake during conditioning and pseudoconditioning. A columnar organization was well-defined in the posterior parietal cortex of rats subjected to CS-US pairing. The medial thalamus was greatly activated in all groups subjected to reticular stimulation. The dorsomedial nucleus showed its largest activation during conditioning. The lateral habenula and a caudal portion of caudate-putamen showed an overall increase in 2-DG uptake during conditioning. The hippocampal formation showed a specific pattern of metabolic activation during conditioning and after conditioning. A laminar densitometric analysis showed that 2-DG uptake was concentrated in a central band along the sides of the hippocampal fissure which corresponded to the molecular layers. Only this neuropil band of greater metabolic activity showed the learning-related changes. In addition, the hippocampal formation was the only nonauditory structure in the forebrain which clearly responded to the acquired signal value of the tone CS after conditioning. These changes revealed by 2-DG provide a first demonstration of forebrain substrates with localized metabolic alterations related to learning and reticular sensitization.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验