文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习在东南亚龋齿研究中的趋势:文献计量分析的启示。

Trends of machine learning for dental caries research in Southeast Asia: insights from a bibliometric analysis.

机构信息

Faculty of Nursing, Chulalongkorn University, Bangkok, Bangkok, 10330, Thailand.

Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia.

出版信息

F1000Res. 2024 Oct 11;13:908. doi: 10.12688/f1000research.154704.3. eCollection 2024.


DOI:10.12688/f1000research.154704.3
PMID:39429637
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11489836/
Abstract

BACKGROUND: Dental caries is a common chronic oral disease, posing a serious public health issue. By analyzing large datasets, machine learning shows potential in addressing this problem. This study employs bibliometric analysis to explore emerging topics, collaborations, key authors, and research trends in Southeast Asia related to the application of machine learning in dental caries management. METHODS: A comprehensive selection using the Scopus database to obtain relevant research, covering publications from inception to July 2024 was done. We employed the Bibliometric approaches, including co-authorship networks, yearly publishing trends, institutional and national partnerships, keyword co-occurrence analysis, and citation analysis, for the collected data. To explore the visualization and network analysis, we employed the tools such as VOSviewer and Bibliometrix in R package. RESULTS: The final bibliometric analysis included 246 papers. We found that Malaysia became the top contributor with 59 publications, followed by Indonesia (37) and Thailand (29). Malaysia had the highest Multiple Country Publications (MCP) ratio at 0.407. Top institutions including the Universiti Sains Malaysia led with 39 articles, followed by Chiang Mai University (36) and the National University of Singapore (30) became the leader. Co-authorship analysis using VOSviewer revealed six distinct clusters. A total of 1220 scholars contributed to these publications. The top 10 keywords, including 'human' and 'dental caries,' indicated research hotspots. CONCLUSION: We found growing evidence of machine learning applications to address dental caries in Southeast Asia. The bibliometric analysis highlights key authors, collaborative networks, and emerging topics, revealing research trends since 2014. This study underscores the importance of bibliometric analysis in tackling this public health issue.

摘要

背景:龋齿是一种常见的慢性口腔疾病,对公共健康构成严重威胁。通过分析大型数据集,机器学习在解决这一问题方面显示出了潜力。本研究采用文献计量学分析方法,探讨了东南亚地区机器学习在龋齿管理应用方面的新兴主题、合作关系、主要作者和研究趋势。

方法:我们通过 Scopus 数据库进行全面检索,获取了 2014 年至 2024 年 7 月期间的相关研究。我们采用了文献计量学方法,包括合著网络、年度出版趋势、机构和国家合作关系、关键词共现分析和引文分析,对收集到的数据进行了分析。为了探索可视化和网络分析,我们使用了 VOSviewer 和 R 包中的 Bibliometrix 等工具。

结果:最终的文献计量学分析共纳入了 246 篇论文。我们发现,马来西亚以 59 篇论文成为发文量最多的国家,其次是印度尼西亚(37 篇)和泰国(29 篇)。马来西亚的多国合作论文比例最高,为 0.407。发文量排名前 10 的机构包括马来西亚理科大学(39 篇)、清迈大学(36 篇)和新加坡国立大学(30 篇)。VOSviewer 中的合著网络分析揭示了六个不同的聚类。共有 1220 位学者为这些论文做出了贡献。排名前 10 的关键词包括“人”和“龋齿”,表明了研究热点。

结论:我们发现越来越多的证据表明机器学习在东南亚地区被用于解决龋齿问题。文献计量学分析突出了主要作者、合作网络和新兴主题,揭示了自 2014 年以来的研究趋势。本研究强调了文献计量学分析在解决这一公共卫生问题中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3b3/11489866/cfe2a3dd5c31/f1000research-13-173111-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3b3/11489866/0f9d5a149a83/f1000research-13-173111-g0000.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3b3/11489866/cfe2a3dd5c31/f1000research-13-173111-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3b3/11489866/0f9d5a149a83/f1000research-13-173111-g0000.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3b3/11489866/cfe2a3dd5c31/f1000research-13-173111-g0001.jpg

相似文献

[1]
Trends of machine learning for dental caries research in Southeast Asia: insights from a bibliometric analysis.

F1000Res. 2024

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
Bibliometric analysis of schistosomiasis research in Southeast Asia (1908-2020).

Acta Trop. 2022-4

[4]
Investigating the evolution of COVID-19 research trends and collaborations in Southeast Asia: A bibliometric analysis.

Diabetes Metab Syndr. 2021

[5]
Application of artificial intelligence in rheumatic disease: a bibliometric analysis.

Clin Exp Med. 2024-8-23

[6]
Growth in chikungunya virus-related research in ASEAN and South Asian countries from 1967 to 2022 following disease emergence: a bibliometric and graphical analysis.

Global Health. 2023-2-6

[7]
Conceptual Structure and Current Trends in Artificial Intelligence, Machine Learning, and Deep Learning Research in Sports: A Bibliometric Review.

Int J Environ Res Public Health. 2022-12-22

[8]
A bibliometric analysis of Community Dentistry and Oral Epidemiology: Fifty years of publications.

Community Dent Oral Epidemiol. 2024-4

[9]
The research hotspots and theme trends of artificial intelligence in nurse education: A bibliometric analysis from 1994 to 2023.

Nurse Educ Today. 2024-10

[10]
A bibliometric analysis of polycystic ovary syndrome research in Southeast Asia: Insights and implications.

Diabetes Metab Syndr. 2022-2

引用本文的文献

[1]
Trends in sleep dentistry research in Asia: A bibliometric analysis.

F1000Res. 2025-5-12

[2]
Artificial intelligence in obstructive sleep apnea: A bibliometric analysis.

Digit Health. 2025-3-21

本文引用的文献

[1]
Artificial neural network and convolutional neural network for prediction of dental caries.

Spectrochim Acta A Mol Biomol Spectrosc. 2024-5-5

[2]
Assessing the status of oral health integration in South East Asian Regional Office countries' Universal Health Coverage-A scoping review.

Int J Health Plann Manage. 2024-3

[3]
Early Childhood Predictors for Dental Caries: A Machine Learning Approach.

J Dent Res. 2023-8

[4]
Burden of dental caries in individuals experiencing food insecurity: a systematic review and meta-analysis.

Nutr Rev. 2023-11-10

[5]
Dental caries detection using a semi-supervised learning approach.

Sci Rep. 2023-1-13

[6]
Dental Caries Risk Assessment in Children 5 Years Old and under via Machine Learning.

Dent J (Basel). 2022-9-1

[7]
Multimodal Data Integration Reveals Mode of Delivery and Snack Consumption Outrank Salivary Microbiome in Association With Caries Outcome in Thai Children.

Front Cell Infect Microbiol. 2022

[8]
Machine Learning in the Diagnosis and Prognostic Prediction of Dental Caries: A Systematic Review.

Caries Res. 2022

[9]
Current Status and Trends in Research on Caries Diagnosis: A Bibliometric Analysis.

Int J Environ Res Public Health. 2022-4-20

[10]
Expert consensus on dental caries management.

Int J Oral Sci. 2022-3-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索