Suppr超能文献

营养过剩对……的生理和代谢的影响

Impact of nutrient excess on physiology and metabolism of .

作者信息

Sedlmayr Viktor Laurin, Széliová Diana, De Kock Veerke, Gansemans Yannick, Van Nieuwerburgh Filip, Peeters Eveline, Quehenberger Julian, Zanghellini Jürgen, Spadiut Oliver

机构信息

Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.

Department of Analytical Chemistry, University of Vienna, Vienna, Austria.

出版信息

Front Microbiol. 2024 Oct 4;15:1475385. doi: 10.3389/fmicb.2024.1475385. eCollection 2024.

Abstract

Overflow metabolism is a well-known phenomenon that describes the seemingly wasteful and incomplete substrate oxidation by aerobic cells, such as yeasts, bacteria, and mammalian cells, even when conditions allow for total combustion via respiration. This cellular response, triggered by an excess of C-source, has not yet been investigated in archaea. In this study, we conducted chemostat cultivations to compare the metabolic and physiological states of the thermoacidophilic archaeon under three conditions, each with gradually increasing nutrient stress. Our results show that has different capacities for the uptake of the two C-sources, monosodium glutamate and glucose. A saturated tricarboxylic acid cycle at elevated nutrient concentrations affects the cell's ability to deplete its intermediates. This includes deploying additional cataplerotic pathways and the secretion of amino acids, notably valine, glycine, and alanine, while glucose is increasingly metabolized via glycogenesis. We did not observe the secretion of common fermentation products, like organic acids. Transcriptomic analysis indicated an upregulation of genes involved in fatty acid metabolism, suggesting the intracellular conservation of energy. Adapting respiratory enzymes under nutrient stress indicated high metabolic flexibility and robust regulatory mechanisms in this archaeon. This study enhances our fundamental understanding of the metabolism of .

摘要

溢流代谢是一种众所周知的现象,它描述了诸如酵母、细菌和哺乳动物细胞等需氧细胞对底物进行看似浪费且不完全的氧化,即使在条件允许通过呼吸作用进行完全燃烧的情况下也是如此。这种由过量碳源引发的细胞反应,尚未在古菌中得到研究。在本研究中,我们进行了恒化器培养,以比较嗜热嗜酸古菌在三种营养胁迫逐渐增加的条件下的代谢和生理状态。我们的结果表明,该古菌对两种碳源(谷氨酸钠和葡萄糖)的摄取能力不同。营养浓度升高时饱和的三羧酸循环会影响细胞耗尽其中间产物的能力。这包括启用额外的回补途径以及氨基酸的分泌,特别是缬氨酸、甘氨酸和丙氨酸,而葡萄糖则越来越多地通过糖原生成途径进行代谢。我们没有观察到常见发酵产物(如有机酸)的分泌。转录组分析表明参与脂肪酸代谢的基因上调,这表明细胞内的能量守恒。在营养胁迫下对呼吸酶的适应性表明该古菌具有高代谢灵活性和强大的调控机制。这项研究增进了我们对该古菌代谢的基本理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2cc/11486757/529948dbb001/fmicb-15-1475385-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验