Suppr超能文献

克服真实世界证据生成中的挑战:以一个成人医疗护理协调项目为例。

Overcoming challenges in real-world evidence generation: An example from an Adult Medical Care Coordination program.

作者信息

Savitz Samuel T, Lampman Michelle A, Inselman Shealeigh A, Dholakia Ruchita, Hunt Vicki L, Mattson Angela B, Stroebel Robert J, McCabe Pamela J, Witwer Stephanie G, Borah Bijan J

机构信息

Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic Rochester Minnesota USA.

Division of Health Care Delivery Research Mayo Clinic Rochester Minnesota USA.

出版信息

Learn Health Syst. 2024 May 22;8(Suppl 1):e10430. doi: 10.1002/lrh2.10430. eCollection 2024 Jun.

Abstract

The Adult Medical Care Coordination program ("the program") was implemented at Mayo Clinic to promote patient self-management and improve 30-day unplanned readmission for patients with high risk for readmission after hospital discharge. This study aimed to evaluate the impact of the program compared to usual care using a pragmatic, stepped wedge cluster randomized trial ("stepped wedge trial"). However, several challenges arose including large differences between the study arms. Our goal is to describe the challenges and present lessons learned on how to overcome such challenges and generate evidence to support practice decisions. We describe the challenges encountered during the trial, the approach to addressing these challenges, and lessons learned for other learning health system researchers facing similar challenges. The trial experienced several challenges in implementation including several clinics dropping from the study and care disruptions due to COVID-19. Additionally, there were large differences in the patient population between the program and usual care arms. For example, the mean age was 76.8 for the program and 68.1 for usual care. Due to these differences, we adapted the methods using the propensity score matching approach that is traditionally applied to observational designs and adjusted for differences in observable characteristics. When conducting pragmatic research, researchers will encounter factors beyond their control that may introduce bias. The lessons learned include the need to weigh the tradeoffs of pragmatic design elements and the potential value of adaptive designs for pragmatic trials. Applying these lessons would promote the successful generation of evidence that informs practice decisions.

摘要

成人医疗护理协调项目(“该项目”)在梅奥诊所实施,旨在促进患者自我管理,并改善出院后再入院风险较高患者的30天非计划再入院情况。本研究旨在通过一项实用的阶梯楔形整群随机试验(“阶梯楔形试验”),评估该项目与常规护理相比的效果。然而,出现了几个挑战,包括研究组之间存在较大差异。我们的目标是描述这些挑战,并介绍如何克服这些挑战以及如何生成支持实践决策的证据的经验教训。我们描述了试验过程中遇到的挑战、应对这些挑战的方法,以及为面临类似挑战的其他学习型健康系统研究人员提供的经验教训。该试验在实施过程中遇到了几个挑战,包括几家诊所退出研究以及因新冠疫情导致的护理中断。此外,该项目组与常规护理组的患者群体存在很大差异。例如,该项目组的平均年龄为76.8岁,常规护理组为68.1岁。由于这些差异,我们采用了倾向得分匹配方法来调整方法,该方法传统上应用于观察性设计,并针对可观察特征的差异进行了调整。在进行实用研究时,研究人员会遇到一些无法控制的因素,这些因素可能会引入偏差。吸取的经验教训包括需要权衡实用设计元素的利弊,以及适应性设计对实用试验的潜在价值。应用这些经验教训将有助于成功生成可为实践决策提供依据的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/220e/11488116/4e9978657bff/LRH2-8-e10430-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验