Suppr超能文献

预测巴基斯坦温和寒冷气候城市地区的土地利用动态、地表温度和城市热场方差指数。

Predicting land use dynamics, surface temperature and urban thermal field variance index in mild cold climate urban area of Pakistan.

作者信息

Khan Mudassir, Qasim Muhammad, Ahmad Adnan, Tahir Adnan Ahmad, Farooqi Abida

机构信息

Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.

Department of Environmental and Conservation Sciences, University of Swat, Pakistan.

出版信息

Heliyon. 2024 Oct 1;10(19):e38787. doi: 10.1016/j.heliyon.2024.e38787. eCollection 2024 Oct 15.

Abstract

Rapid urbanization attributed to population growth is affecting the built environment's thermal and landscape dynamics. Using Landsat satellite datasets, this study investigated the complex interplay between urban Land Cover (LC) modification, fluctuation in Land Surface Temperature (LST) and severity of Urban Heat Island (UHI) from 1990 to 2020 in Peshawar City, Pakistan. Thermal bands were used to calculate LST and severity of UHI using the Urban Thermal Field Variance Index (UTFVI). Furthermore, through Cellular Automata (CA), Logistic Regression (LR), and Artificial Neural Network (ANN), future predictions on thermal characteristics associated with land use changes were made. The results showed that the urban areas expanded by ∼25 % from 1990 to 2020, while a ∼10 % decrease occurred in urban vegetation. The city is projected to expand by ∼45 % and ∼56 % in 2035 and 2050, respectively. Notably, the results also demonstrated that urban hotspots were found the warmest with the strongest UHI severity (∼34 °C), followed by the barren land (∼32 °C), and vegetation. The results further predicted an increase of LST (∼55 % and ∼82 %) and UTFVI (∼62 % and ∼83 %) in 2035 and 2050, respectively. These findings provide useful insights for policymakers and city planners to mitigate heat stress and create a sustainable urban environment through the development of effective urban land use policies and urban greening.

摘要

由于人口增长导致的快速城市化正在影响建成环境的热动力学和景观动态。本研究利用陆地卫星数据集,调查了1990年至2020年巴基斯坦白沙瓦市城市土地覆盖(LC)变化、地表温度(LST)波动与城市热岛(UHI)强度之间的复杂相互作用。利用热波段,通过城市热场方差指数(UTFVI)计算LST和UHI强度。此外,通过细胞自动机(CA)、逻辑回归(LR)和人工神经网络(ANN),对与土地利用变化相关的热特征进行了未来预测。结果表明,1990年至2020年城市面积扩大了约25%,而城市植被减少了约10%。预计到2035年和2050年,该市将分别扩大约45%和56%。值得注意的是,结果还表明,城市热点地区温度最高,UHI强度最强(约34°C),其次是荒地(约32°C)和植被。结果进一步预测,到2035年和2050年,LST将分别增加约55%和82%,UTFVI将分别增加约62%和83%。这些发现为政策制定者和城市规划者通过制定有效的城市土地利用政策和城市绿化来缓解热应激和创造可持续城市环境提供了有用的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a4/11490814/608a04bdff74/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验