Azam Mohammad, Parveen Mehtab, Kadir Nurul Huda Abd, Min Kim, Alam Mahboob
Department of Applied Chemistry, Z. H. College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 India.
Division of Organic Synthesis, Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
RSC Med Chem. 2024 Sep 26;15(11):3889-911. doi: 10.1039/d4md00257a.
In light of the ongoing pandemic caused by SARS-CoV-2, effective and clinically translatable treatments are desperately needed for COVID-19 and its emerging variants. In this study, some derivatives, including 7β-aminocholestene compounds, and 3β-acetoxy-6-nitrocholesta-4,6-diene were synthesized, in quantitative yields from 7β-bromo-6-nitrocholest-5-enes (1-3) with a small library of amines. The synthesized steroidal products were then thoroughly characterized using a range of physicochemical techniques, including IR, NMR, UV, MS, and elemental analysis. Next, a virtual screening based on structures using docking studies was conducted to investigate the potential of these synthesized compounds as therapeutic candidates against SARS-CoV-2. Specifically, we evaluated the compounds' binding energy of the reactants and their products with three SARS-CoV-2 functional proteins: the papain-like protease, 3C-like protease or main protease, and RNA-dependent RNA polymerase. Our results indicate that the 7β-aminocholestene derivatives (4-8) display intermediate to excellent binding energy, suggesting that they interact strongly with the receptor's active amino acids and may be promising drug candidates for inhibiting SARS-CoV-2. Although the starting steroid derivatives; 7β-bromo-6-nitrocholest-5-enes (1-3) and one steroid product; 3β-acetoxy-6-nitrocholesta-4,6-diene (9) exhibited strong binding energies with various SARS-CoV-2 receptors, they did not meet the Lipinski Rule and ADMET properties required for drug development. These compounds showed either mutagenic or reproductive/developmental toxicity when assessed using toxicity prediction software. The findings based on structure-based virtual screening, suggest that 7β-aminocholestaines (4-8) may be useful for reducing the susceptibility to SARS-CoV-2 infection. The docking pose of compound 4, which has a high score of -7.4 kcal mol, was subjected to AI-assisted deep learning to generate 60 AI-designed molecules for drug design. Molecular docking of these AI molecules was performed to select optimal candidates for further analysis and visualization. The cytotoxicity and antioxidant effects of 3β-acetoxy-6-nitrocholesta-4,6-diene were tested , showing marked cytotoxicity and antioxidant activity. To elucidate the molecular basis for these effects, steroidal compound 9 was subjected to molecular docking analysis to identify potential binding interactions. The stability of the top-ranked docking pose was subsequently assessed using molecular dynamics simulations.
鉴于由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发的持续大流行,对于2019冠状病毒病(COVID-19)及其新出现的变种,迫切需要有效的、可临床转化的治疗方法。在本研究中,合成了一些衍生物,包括7β-氨基胆甾烯化合物和3β-乙酰氧基-6-硝基胆甾-4,6-二烯,它们由7β-溴-6-硝基胆甾-5-烯(1-3)与一小类胺以定量产率合成。然后,使用一系列物理化学技术,包括红外光谱(IR)、核磁共振(NMR)、紫外光谱(UV)、质谱(MS)和元素分析,对合成的甾体产物进行了全面表征。接下来,进行了基于结构的虚拟筛选,利用对接研究来研究这些合成化合物作为抗SARS-CoV-2治疗候选药物的潜力。具体而言,我们评估了这些化合物的反应物及其产物与三种SARS-CoV-2功能蛋白的结合能:木瓜样蛋白酶、3C样蛋白酶或主要蛋白酶,以及RNA依赖性RNA聚合酶。我们的结果表明,7β-氨基胆甾烯衍生物(4-8)表现出中等至优异的结合能,这表明它们与受体的活性氨基酸强烈相互作用,可能是抑制SARS-CoV-2的有前途的候选药物。尽管起始甾体衍生物7β-溴-6-硝基胆甾-5-烯(1-3)和一种甾体产物3β-乙酰氧基-6-硝基胆甾-4,6-二烯(9)与各种SARS-CoV-2受体表现出很强的结合能,但它们不符合药物开发所需的Lipinski规则和药物代谢动力学、药物毒性、药物效应学及药物转运体性质。使用毒性预测软件评估时,这些化合物表现出致突变性或生殖/发育毒性。基于结构的虚拟筛选结果表明,7β-氨基胆甾烷(4-8)可能有助于降低对SARS-CoV-2感染的易感性。对得分高达-7.4千卡/摩尔的化合物4的对接构象进行了人工智能辅助深度学习,以生成60个用于药物设计的人工智能设计分子。对这些人工智能分子进行分子对接,以选择最佳候选物进行进一步分析和可视化。测试了3β-乙酰氧基-6-硝基胆甾-4,6-二烯的细胞毒性和抗氧化作用,结果显示出显著的细胞毒性和抗氧化活性。为了阐明这些作用的分子基础,对甾体化合物9进行了分子对接分析,以确定潜在的结合相互作用。随后使用分子动力学模拟评估了排名靠前的对接构象的稳定性。