Preferred Networks, Inc., 100-0004, 1-6-1 Otemachi, Chiyoda-ku, Tokyo, Japan.
Central Technical Research Laboratory, ENEOS Corporation, 231-0815, 8 Chidoricho, Naka-ku, Yokohama, Kanagawa, Japan.
Nat Commun. 2022 May 30;13(1):2991. doi: 10.1038/s41467-022-30687-9.
Computational material discovery is under intense study owing to its ability to explore the vast space of chemical systems. Neural network potentials (NNPs) have been shown to be particularly effective in conducting atomistic simulations for such purposes. However, existing NNPs are generally designed for narrow target materials, making them unsuitable for broader applications in material discovery. Here we report a development of universal NNP called PreFerred Potential (PFP), which is able to handle any combination of 45 elements. Particular emphasis is placed on the datasets, which include a diverse set of virtual structures used to attain the universality. We demonstrated the applicability of PFP in selected domains: lithium diffusion in LiFeSOF, molecular adsorption in metal-organic frameworks, an order-disorder transition of Cu-Au alloys, and material discovery for a Fischer-Tropsch catalyst. They showcase the power of PFP, and this technology provides a highly useful tool for material discovery.
计算材料发现因其能够探索广阔的化学系统空间而受到广泛关注。神经网络势(NNP)已被证明在进行此类目的的原子模拟方面特别有效。然而,现有的 NNP 通常是为窄目标材料设计的,因此不适合更广泛的材料发现应用。在这里,我们报告了一种称为首选势(PFP)的通用 NNP 的开发,它能够处理任何 45 种元素的组合。特别强调的是数据集,其中包括一组用于实现通用性的各种虚拟结构。我们在选定的领域展示了 PFP 的适用性:LiFeSOF 中的锂离子扩散、金属有机骨架中的分子吸附、Cu-Au 合金的有序-无序转变以及费托合成催化剂的材料发现。它们展示了 PFP 的强大功能,这项技术为材料发现提供了一个非常有用的工具。