Sun Jiacheng, Akbar Ghorashi Sayed Ali, Watanabe Kenji, Taniguchi Takashi, Camino Fernando, Cano Jennifer, Du Xu
Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, United States.
Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
Nano Lett. 2024 Oct 30;24(43):13600-13606. doi: 10.1021/acs.nanolett.4c03238. Epub 2024 Oct 21.
On a two-dimensional crystal, a "superlattice" with nanometer-scale periodicity can be imposed to tune the Bloch electron spectrum, enabling novel physical properties inaccessible in the original crystal. While creating 2D superlattices by means of nanopatterned electric gates has been studied for band structure engineering in recent years, evidence of electron correlations─which drive many problems at the forefront of physics research─remains to be uncovered. In this work, we demonstrate signatures of a correlated insulator phase in Bernal-stacked bilayer graphene modulated by a gate-defined superlattice potential, manifested as resistance peaks centered at integer multiples of single electron per superlattice unit cell carrier densities. The observation is consistent with the formation of a stack of flat low-energy bands due to the superlattice potential combined with inversion symmetry breaking. Our work paves the way to custom-designed superlattices for studying band structure engineering and strongly correlated electrons in 2D materials.
在二维晶体上,可以施加具有纳米级周期性的“超晶格”来调节布洛赫电子能谱,从而实现原始晶体中无法获得的新奇物理特性。尽管近年来通过纳米图案化电栅极创建二维超晶格已被用于能带结构工程研究,但电子相关性的证据——这是推动许多前沿物理研究问题的关键因素——仍有待发现。在这项工作中,我们展示了由栅极定义的超晶格势调制的伯纳尔堆叠双层石墨烯中关联绝缘体态的特征,表现为以每个超晶格单胞载流子密度的单电子整数倍为中心的电阻峰。该观测结果与由于超晶格势结合反演对称性破缺而形成的一系列平坦低能带相一致。我们的工作为定制设计超晶格以研究二维材料中的能带结构工程和强关联电子铺平了道路。