Suppr超能文献

基于异质性感知的祖先特异性关联研究整合回归。

Heterogeneity-aware integrative regression for ancestry-specific association studies.

机构信息

School of Statistics, University of Minnesota, Minneapolis, MN 55455, USA.

Department of Statistics, University of Florida, Gainesville, FL 32611, USA.

出版信息

Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae109.

Abstract

Ancestry-specific proteome-wide association studies (PWAS) based on genetically predicted protein expression can reveal complex disease etiology specific to certain ancestral groups. These studies require ancestry-specific models for protein expression as a function of SNP genotypes. In order to improve protein expression prediction in ancestral populations historically underrepresented in genomic studies, we propose a new penalized maximum likelihood estimator for fitting ancestry-specific joint protein quantitative trait loci models. Our estimator borrows information across ancestral groups, while simultaneously allowing for heterogeneous error variances and regression coefficients. We propose an alternative parameterization of our model that makes the objective function convex and the penalty scale invariant. To improve computational efficiency, we propose an approximate version of our method and study its theoretical properties. Our method provides a substantial improvement in protein expression prediction accuracy in individuals of African ancestry, and in a downstream PWAS analysis, leads to the discovery of multiple associations between protein expression and blood lipid traits in the African ancestry population.

摘要

基于遗传预测蛋白质表达的特定祖源全蛋白质组关联研究(PWAS)可以揭示特定祖源群体特有的复杂疾病病因。这些研究需要针对蛋白质表达的特定祖源模型,作为 SNP 基因型的函数。为了提高在基因组研究中历史上代表性不足的祖源群体中的蛋白质表达预测,我们提出了一种新的惩罚最大似然估计器,用于拟合特定祖源的联合蛋白质数量性状位点模型。我们的估计器在跨祖源群体的同时借用信息,同时允许异质误差方差和回归系数。我们提出了我们模型的另一种参数化,使目标函数凸和惩罚尺度不变。为了提高计算效率,我们提出了我们方法的一个近似版本,并研究了它的理论性质。我们的方法在非洲裔个体的蛋白质表达预测准确性方面有了很大的提高,并且在下游的 PWAS 分析中,导致在非洲裔人群中发现了蛋白质表达与血液脂质特征之间的多个关联。

相似文献

1
Heterogeneity-aware integrative regression for ancestry-specific association studies.
Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae109.
5
CADET: Enhanced transcriptome-wide association analyses in admixed samples using eQTL summary data.
Am J Hum Genet. 2025 Jul 3;112(7):1580-1596. doi: 10.1016/j.ajhg.2025.05.010. Epub 2025 Jun 13.
6
An ensemble penalized regression method for multi-ancestry polygenic risk prediction.
Nat Commun. 2024 Apr 15;15(1):3238. doi: 10.1038/s41467-024-47357-7.
8
Protein quantitative trait locus analysis in African American and non-Hispanic White individuals.
Genome Biol. 2025 Jul 10;26(1):200. doi: 10.1186/s13059-025-03671-x.

本文引用的文献

1
Strategies for the Genomic Analysis of Admixed Populations.
Annu Rev Biomed Data Sci. 2023 Aug 10;6:105-127. doi: 10.1146/annurev-biodatasci-020722-014310. Epub 2023 Apr 26.
4
A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids.
Am J Hum Genet. 2022 Aug 4;109(8):1366-1387. doi: 10.1016/j.ajhg.2022.06.012.
5
Genetic interactions drive heterogeneity in causal variant effect sizes for gene expression and complex traits.
Am J Hum Genet. 2022 Jul 7;109(7):1286-1297. doi: 10.1016/j.ajhg.2022.05.014. Epub 2022 Jun 17.
7
The power of genetic diversity in genome-wide association studies of lipids.
Nature. 2021 Dec;600(7890):675-679. doi: 10.1038/s41586-021-04064-3. Epub 2021 Dec 9.
8
Mapping the proteo-genomic convergence of human diseases.
Science. 2021 Nov 12;374(6569):eabj1541. doi: 10.1126/science.abj1541.
9
Pursuing sources of heterogeneity in modeling clustered population.
Biometrics. 2022 Jun;78(2):716-729. doi: 10.1111/biom.13434. Epub 2021 Feb 10.
10
Genetic analyses of diverse populations improves discovery for complex traits.
Nature. 2019 Jun;570(7762):514-518. doi: 10.1038/s41586-019-1310-4. Epub 2019 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验