Suppr超能文献

分布假说作为词-词共现与类比平行四边形之间的同构关系。

Distributional hypothesis as isomorphism between word-word co-occurrence and analogical parallelograms.

机构信息

Tokyo Denki University, Hatoyama, Saitama, Japan.

Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan.

出版信息

PLoS One. 2024 Oct 21;19(10):e0312151. doi: 10.1371/journal.pone.0312151. eCollection 2024.

Abstract

Most of the modern natural language processing (NLP) techniques are based on the vector space models of language, in which each word is represented by a vector in a high dimensional space. One of the earliest successes was demonstrated by the four-term analogical reasoning task: what is to C as B is to A? The trained word vectors form "parallelograms" representing the quadruple of words in analogy. This discovery in NLP offers us insight into our understanding of human semantic representation of words via analogical reasoning. Despite successful applications of the large-scale language models, it has not been fully understood why such parallelograms emerge by learning through natural language data. As the vector space model is not optimized to form parallelograms, the key structure related to geometric shapes of word vectors is expected to be in the data, rather than the models. In the present article, we test our hypothesis that such parallelogram arrangement of word vectors readily exists in the co-occurrence statistics of language. Our approach focuses more on the data itself, and it is different from the existing theoretical approach trying to find the mechanism of parallelogram formation in the algorithms and/or vector arithmetic operations on word vectors. First, our analysis suggested that analogical reasoning is possible by decomposition of the bigram co-occurrence matrix. Second, we demonstrated the formation of a parallelepiped, a more structured geometric object than a parallelogram, by creating a small artificial corpus and its word vectors. With these results, we propose a refined form of distributional hypothesis pointing out an isomorphism between a sort of symmetry or exchangeability and word co-occurrence statistics.

摘要

大多数现代自然语言处理 (NLP) 技术都基于语言的向量空间模型,其中每个单词都由高维空间中的向量表示。最早的成功之一是通过四项类比推理任务证明的:C 与 B 的关系与 A 与 B 的关系相同?经过训练的单词向量形成了“平行四边形”,代表类比中的四个单词的 quadruple。这一在 NLP 中的发现为我们提供了通过类比推理理解人类单词语义表示的见解。尽管大规模语言模型得到了成功应用,但人们仍不完全理解为什么通过自然语言数据学习会出现这种平行四边形。由于向量空间模型不是优化为形成平行四边形的,因此与词向量几何形状相关的关键结构预计将存在于数据中,而不是模型中。在本文中,我们检验了我们的假设,即词向量的这种平行四边形排列在语言的共现统计中很容易存在。我们的方法更侧重于数据本身,与试图在算法中找到平行四边形形成的机制或词向量的向量运算的现有理论方法不同。首先,我们的分析表明,通过双词共现矩阵的分解可以进行类比推理。其次,我们通过创建一个小型人工语料库及其词向量证明了平行六面体的形成,这是一种比平行四边形更结构化的几何对象。有了这些结果,我们提出了一种分布假设的改进形式,指出了某种对称性或可交换性与词共现统计之间的同构关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25b9/11493305/391bf7029214/pone.0312151.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验