Suppr超能文献

人工智能辅助压缩感知磁共振成像在常规临床环境中的成像质量综合评估。

Comprehensive assessment of imaging quality of artificial intelligence-assisted compressed sensing-based MR images in routine clinical settings.

机构信息

Department of Radiology, Sprint Diagnostics, Jubilee Hills, Hyderabad, India.

Department of Radiology, SSB Hospital, Faridabad, India.

出版信息

BMC Med Imaging. 2024 Oct 21;24(1):284. doi: 10.1186/s12880-024-01463-6.

Abstract

BACKGROUND

Conventional MR acceleration techniques, such as compressed sensing, parallel imaging, and half Fourier often face limitations, including noise amplification, reduced signal-to-noise ratio (SNR) and increased susceptibility to artifacts, which can compromise image quality, especially in high-speed acquisitions. Artificial intelligence (AI)-assisted compressed sensing (ACS) has emerged as a novel approach that combines the conventional techniques with advanced AI algorithms. The objective of this study was to examine the imaging quality of the ACS approach by qualitative and quantitative analysis for brain, spine, kidney, liver, and knee MR imaging, as well as compare the performance of this method with conventional (non-ACS) MR imaging.

METHODS

This study included 50 subjects. Three radiologists independently assessed the quality of MR images based on artefacts, image sharpness, overall image quality and diagnostic efficacy. SNR, contrast-to-noise ratio (CNR), edge content (EC), enhancement measure (EME), scanning time were used for quantitative evaluation. The Cohen's kappa correlation coefficient (k) was employed to measure radiologists' inter-observer agreement, and the Mann Whitney U-test used for comparison between non-ACS and ACS.

RESULTS

The qualitative analysis of three radiologists demonstrated that ACS images showed superior clinical information than non-ACS images with a mean k of ~ 0.70. The images acquired with ACS approach showed statistically higher values (p < 0.05) for SNR, CNR, EC, and EME compared to the non-ACS images. Furthermore, the study's findings indicated that ACS-enabled images reduced scan time by more than 50% while maintaining high imaging quality.

CONCLUSION

Integrating ACS technology into routine clinical settings has the potential to speed up image acquisition, improve image quality, and enhance diagnostic procedures and patient throughput.

摘要

背景

传统的磁共振加速技术,如压缩感知、并行成像和半傅里叶技术,常常面临着一些限制,包括噪声放大、信噪比降低以及对伪影的敏感性增加,这些都会影响图像质量,尤其是在高速采集时。人工智能(AI)辅助压缩感知(ACS)技术作为一种新方法,结合了传统技术和先进的 AI 算法。本研究的目的是通过对脑、脊柱、肾、肝和膝关节磁共振成像的定性和定量分析,来评估 ACS 方法的成像质量,并比较该方法与常规(非 ACS)磁共振成像的性能。

方法

本研究纳入了 50 例受试者。三位放射科医生独立根据图像伪影、图像锐利度、整体图像质量和诊断效能对磁共振图像质量进行评估。采用信噪比(SNR)、对比噪声比(CNR)、边缘内容(EC)、增强测量(EME)和扫描时间进行定量评估。采用 Cohen's kappa 相关系数(k)来评估放射科医生间的观察者间一致性,并采用 Mann Whitney U 检验来比较非 ACS 和 ACS 之间的差异。

结果

三位放射科医生的定性分析结果表明,ACS 图像提供的临床信息量优于非 ACS 图像,平均 k 值约为 0.70。与非 ACS 图像相比,ACS 采集的图像 SNR、CNR、EC 和 EME 值均有统计学显著提高(p<0.05)。此外,研究结果表明,ACS 技术可以在保持高成像质量的同时,将扫描时间缩短 50%以上。

结论

将 ACS 技术整合到常规临床环境中,有望加速图像采集,提高图像质量,并增强诊断程序和患者吞吐量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/11494941/72a75664f9fb/12880_2024_1463_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验