Suppr超能文献

利用人工智能辅助压缩感知加速脑部三维T2液体衰减反转恢复成像:与并行成像的比较研究

Accelerating brain three-dimensional T2 fluid-attenuated inversion recovery using artificial intelligence-assisted compressed sensing: a comparison study with parallel imaging.

作者信息

Ding Jinli, Chai Li, Duan Yunyun, Wang Ziyan, Miao Chengpeng, Xiang Shaoxin, Yang Yuxin, Liu Yaou

机构信息

Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.

出版信息

Quant Imaging Med Surg. 2024 Oct 1;14(10):7237-7248. doi: 10.21037/qims-24-722. Epub 2024 Aug 27.

Abstract

BACKGROUND

Shortening the acquisition time of brain three-dimensional T2 fluid-attenuated inversion recovery (3D T2 FLAIR) by using acceleration techniques has the potential to reduce motion artifacts in images and facilitate clinical application. This study aimed to assess the image quality of brain 3D T2 FLAIR accelerated by artificial intelligence-assisted compressed sensing (ACS) in comparison to 3D T2 FLAIR accelerated by parallel imaging (PI).

METHODS

In this prospective cohort study, 102 consecutive participants, including both healthy individuals and those with suspected brain diseases, were recruited and underwent both ACS- and PI-3D T2 FLAIR scans with a 3.0-Tesla magnetic resonance imaging system from February 2023 to October 2023 in Beijing Tiantan Hospital, Capital Medical University. Quantitative assessment involved white matter (WM) and gray matter (GM) signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), whole-image sharpness, and tumor volume. Qualitative assessment included the scoring of overall image quality, GM-WM border sharpness, and diagnostic confidence in lesion detection.

RESULTS

ACS-3D T2 FLAIR exhibited a shorter acquisition time compared to PI-3D T2 FLAIR (105 320 seconds). ACS-3D T2 FLAIR, compared to PI-3D T2 FLAIR, demonstrated a significantly higher mean SNR (25.922±6.811 22.544±5.853; P<0.001), SNR (18.324±7.137 17.102±6.659; P=0.049), CNR (4.613±1.547 4.160±1.552; P<0.001), and sharpness (0.413±0.049 0.396±0.034; P<0.001), while no significant differences were found for the overall image quality ratings (P=0.063) or GM-WM border sharpness ratings (P=0.125). A good agreement on tumor volume was achieved between ACS-3D T2 FLAIR and PI-3D T2 FLAIR images (intraclass correlation coefficient =0.999; 0.998-1.000; P<0.001). Images acquired with ACS demonstrated nearly equivalent diagnostic confidence to those obtained with PI (P>0.05).

CONCLUSIONS

The ACS technique offers a substantial reduction in scanning time for brain 3D T2 FLAIR compared to PI while maintaining good image quality and equivalent diagnostic confidence.

摘要

背景

利用加速技术缩短脑部三维T2液体衰减反转恢复序列(3D T2 FLAIR)的采集时间,有可能减少图像中的运动伪影并促进临床应用。本研究旨在评估与并行成像(PI)加速的3D T2 FLAIR相比,人工智能辅助压缩感知(ACS)加速的脑部3D T2 FLAIR的图像质量。

方法

在这项前瞻性队列研究中,连续招募了102名参与者,包括健康个体和疑似脑部疾病患者,于2023年2月至2023年10月在北京天坛医院、首都医科大学使用3.0特斯拉磁共振成像系统进行了ACS和PI-3D T2 FLAIR扫描。定量评估包括白质(WM)和灰质(GM)的信噪比(SNR)和对比噪声比(CNR)、全图清晰度以及肿瘤体积。定性评估包括对整体图像质量、GM-WM边界清晰度以及病变检测诊断信心的评分。

结果

与PI-3D T2 FLAIR相比,ACS-3D T2 FLAIR的采集时间更短(105±320秒)。与PI-3D T2 FLAIR相比,ACS-3D T2 FLAIR的平均SNR显著更高(25.922±6.811对22.544±5.853;P<0.001),SNR(18.324±7.137对17.102±6.659;P=0.049),CNR(4.613±1.547对4.160±1.552;P<0.001)和清晰度(0.413±0.049对0.396±0.034;P<0.001),而整体图像质量评分(P=0.063)或GM-WM边界清晰度评分(P=0.125)未发现显著差异。ACS-3D T2 FLAIR和PI-3D T2 FLAIR图像在肿瘤体积方面达成了良好的一致性(组内相关系数=0.999;0.998 - 1.000;P<0.001)。ACS采集的图像与PI采集的图像在诊断信心上几乎相当(P>0.05)。

结论

与PI相比,ACS技术在保持良好图像质量和相当诊断信心的同时,大幅缩短了脑部3D T2 FLAIR的扫描时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6a9/11485369/cacaefe41f4a/qims-14-10-7237-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验