Suppr超能文献

一种具有多尺度特征增强的轻量化神经网络,用于肝脏 CT 分割。

A lightweight neural network with multiscale feature enhancement for liver CT segmentation.

机构信息

Hamad Medical Corporation, Doha, Qatar.

Hamad Bin Khalifa University, Doha, Qatar.

出版信息

Sci Rep. 2022 Aug 19;12(1):14153. doi: 10.1038/s41598-022-16828-6.

Abstract

Segmentation of abdominal Computed Tomography (CT) scan is essential for analyzing, diagnosing, and treating visceral organ diseases (e.g., hepatocellular carcinoma). This paper proposes a novel neural network (Res-PAC-UNet) that employs a fixed-width residual UNet backbone and Pyramid Atrous Convolutions, providing a low disk utilization method for precise liver CT segmentation. The proposed network is trained on medical segmentation decathlon dataset using a modified surface loss function. Additionally, we evaluate its quantitative and qualitative performance; the Res16-PAC-UNet achieves a Dice coefficient of 0.950 ± 0.019 with less than half a million parameters. Alternatively, the Res32-PAC-UNet obtains a Dice coefficient of 0.958 ± 0.015 with an acceptable parameter count of approximately 1.2 million.

摘要

腹部计算机断层扫描 (CT) 分割对于分析、诊断和治疗内脏器官疾病(例如肝细胞癌)至关重要。本文提出了一种新的神经网络(Res-PAC-UNet),它采用固定宽度残差 UNet 骨干和 Pyramid Atrous Convolutions,为精确的肝脏 CT 分割提供了一种低磁盘利用率方法。该网络使用修改后的表面损失函数在医学分割十项全能数据集上进行训练。此外,我们评估了它的定量和定性性能;Res16-PAC-UNet 的 Dice 系数为 0.950 ± 0.019,参数量少于 50 万。另一方面,Res32-PAC-UNet 的 Dice 系数为 0.958 ± 0.015,参数量约为 120 万,可接受。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/187e/9391485/5f010e4541fd/41598_2022_16828_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验