PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain.
BMC Med Inform Decis Mak. 2024 Oct 21;23(Suppl 3):303. doi: 10.1186/s12911-024-02700-2.
Familiar cardiopathies are genetic disorders that affect the heart. Cardiologists face a significant problem when treating patients suffering from these disorders: most DNA variations are novel (i.e., they have not been classified before). To facilitate the analysis of novel variations, we present CardioGraph, a platform specially designed to support the analysis of novel variations and help determine whether they are relevant for diagnosis. To do this, CardioGraph identifies and annotates the consequence of variations and provides contextual information regarding which heart structures, pathways, and biological processes are potentially affected by those variations.
We conducted our work through three steps. First, we define a data model to support the representation of the heterogeneous information. Second, we instantiate this data model to integrate and represent all the genomics knowledge available for familiar cardiopathies. In this step, we consider genomic data sources and the scientific literature. Third, the design and implementation of the CardioGraph platform. A three-tier structure was used: the database, the backend, and the frontend.
Three main results were obtained: the data model, the knowledge base generated with the instantiation of the data model, and the platform itself. The platform code has been included as supplemental material in this manuscript. Besides, an instance is publicly available in the following link: https://genomics-hub.pros.dsic.upv.es:3090 .
CardioGraph is a platform that supports the analysis of novel variations. Future work will expand the body of knowledge about familiar cardiopathies and include new information about hotspots, functional studies, and previously reported variations.
常见的心脏病是影响心脏的遗传疾病。当心脏病专家治疗患有这些疾病的患者时,他们面临着一个重大问题:大多数 DNA 变异是新的(即,它们以前没有被分类)。为了方便分析新的变异,我们提出了 CardioGraph,这是一个专门设计的平台,用于支持新变异的分析,并帮助确定它们是否与诊断相关。为此,CardioGraph 识别和注释变异的后果,并提供有关潜在受这些变异影响的心脏结构、途径和生物过程的上下文信息。
我们通过三个步骤进行了工作。首先,我们定义了一个数据模型来支持异构信息的表示。其次,我们实例化了这个数据模型,以整合和表示所有常见心脏病的基因组学知识。在这一步中,我们考虑了基因组数据源和科学文献。第三,CardioGraph 平台的设计和实现。使用了三层结构:数据库、后端和前端。
获得了三个主要结果:数据模型、用数据模型实例化生成的知识库和平台本身。平台代码已包含在本文档的补充材料中。此外,在以下链接中可以公开访问一个实例:https://genomics-hub.pros.dsic.upv.es:3090 。
CardioGraph 是一个支持新变异分析的平台。未来的工作将扩展常见心脏病知识库,并包括热点、功能研究和以前报告的变异的新信息。