Suppr超能文献

迈向生物医学研究中的生成式数字孪生体。

Towards generative digital twins in biomedical research.

作者信息

Wu Jiqing, Koelzer Viktor H

机构信息

Department of Biomedical Engineering, University of Basel, Basel, Switzerland.

Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.

出版信息

Comput Struct Biotechnol J. 2024 Oct 3;23:3481-3488. doi: 10.1016/j.csbj.2024.09.030. eCollection 2024 Dec.

Abstract

Digital twins in biomedical research, i.e. virtual replicas of biological entities such as cells, organs, or entire organisms, hold great potential to advance personalized healthcare. As all biological processes happen in space, there is a growing interest in modeling biological entities within their native context. Leveraging generative artificial intelligence (AI) and high-volume biomedical data profiled with spatial technologies, researchers can recreate spatially-resolved digital representations of a physical entity with high fidelity. In application to biomedical fields such as computational pathology, oncology, and cardiology, these generative digital twins (GDT) thus enable compelling modeling for simulated interventions, facilitating the exploration of 'what if' causal scenarios for clinical diagnostics and treatments tailored to individual patients. Here, we outline recent advancements in this novel field and discuss the challenges and future research directions.

摘要

生物医学研究中的数字孪生,即细胞、器官或整个生物体等生物实体的虚拟复制品,在推进个性化医疗方面具有巨大潜力。由于所有生物过程都发生在空间中,人们越来越有兴趣在其原生环境中对生物实体进行建模。利用生成式人工智能(AI)和通过空间技术剖析的大量生物医学数据,研究人员可以高保真地重新创建物理实体的空间分辨数字表示。因此,在应用于计算病理学、肿瘤学和心脏病学等生物医学领域时,这些生成式数字孪生(GDT)能够为模拟干预提供引人注目的建模,便于探索针对个体患者的临床诊断和治疗的“如果……会怎样”因果情景。在此,我们概述了这一新兴领域的最新进展,并讨论了挑战和未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e101/11491725/e64081770c69/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验