Shrestha Gurung Bichar Dip, Rayamajhi Manish, Maharjan Naina, Do Tuyen, Bhandari Dikshya, Yadav Rupesh, Aryal Shiva, Gnimpieba Etienne Z
University of South Dakota, Department of Biomedical Engineering, Sioux Falls, 57107, USA.
University of South Dakota, Department of Computer Science, Vermillion, 57069, USA.
bioRxiv. 2025 Jul 25:2025.07.21.666059. doi: 10.1101/2025.07.21.666059.
Urban wastewater microbiomes are complex and temporally dynamic, offering valuable insight into community-scale microbial ecology and potential public health trends. However, existing wastewater-based studies often remain descriptive, lacking tools for predictive modeling. In this study, we introduce a digital twin framework that forecasts microbial abundance trajectories in urban wastewater using an interpretable generative model, Q-net. Trained on a 30-week longitudinal metagenomic dataset from seven wastewater treatment plants, the model captures temporal microbial dynamics with high fidelity ( for key taxa; at the final timepoint). Beyond accurate forecasting, Q-net provides transparent model structure through conditional inference trees and enables simulation of realistic microbial trends under hypothetical scenarios. This work demonstrates the potential of digital twins to move wastewater microbiome studies from static snapshots to dynamic, predictive systems, with broad implications for environmental monitoring and microbial ecosystem modeling.
城市污水微生物群落复杂且随时间动态变化,为群落尺度的微生物生态学及潜在的公共卫生趋势提供了有价值的见解。然而,现有的基于污水的研究往往仍停留在描述性层面,缺乏预测建模工具。在本研究中,我们引入了一个数字孪生框架,该框架使用可解释的生成模型Q-net预测城市污水中微生物丰度轨迹。该模型基于来自七个污水处理厂的30周纵向宏基因组数据集进行训练,能以高保真度捕捉微生物的时间动态(关键分类群的 ;在最后一个时间点的 )。除了准确预测外,Q-net还通过条件推理树提供透明的模型结构,并能够在假设情景下模拟现实的微生物趋势。这项工作展示了数字孪生将污水微生物群落研究从静态快照转变为动态预测系统的潜力,对环境监测和微生物生态系统建模具有广泛意义。