Suppr超能文献

生成式人工智能时代基于数字孪生技术的心血管护理

Cardiovascular care with digital twin technology in the era of generative artificial intelligence.

作者信息

Thangaraj Phyllis M, Benson Sean H, Oikonomou Evangelos K, Asselbergs Folkert W, Khera Rohan

机构信息

Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA.

Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.

出版信息

Eur Heart J. 2024 Sep 26;45(45):4808-21. doi: 10.1093/eurheartj/ehae619.

Abstract

Digital twins, which are in silico replications of an individual and its environment, have advanced clinical decision-making and prognostication in cardiovascular medicine. The technology enables personalized simulations of clinical scenarios, prediction of disease risk, and strategies for clinical trial augmentation. Current applications of cardiovascular digital twins have integrated multi-modal data into mechanistic and statistical models to build physiologically accurate cardiac replicas to enhance disease phenotyping, enrich diagnostic workflows, and optimize procedural planning. Digital twin technology is rapidly evolving in the setting of newly available data modalities and advances in generative artificial intelligence, enabling dynamic and comprehensive simulations unique to an individual. These twins fuse physiologic, environmental, and healthcare data into machine learning and generative models to build real-time patient predictions that can model interactions with the clinical environment to accelerate personalized patient care. This review summarizes digital twins in cardiovascular medicine and their potential future applications by incorporating new personalized data modalities. It examines the technical advances in deep learning and generative artificial intelligence that broaden the scope and predictive power of digital twins. Finally, it highlights the individual and societal challenges as well as ethical considerations that are essential to realizing the future vision of incorporating cardiology digital twins into personalized cardiovascular care.

摘要

数字孪生是个体及其环境的计算机模拟,已在心血管医学中推动了临床决策和预后判断。该技术能够对临床场景进行个性化模拟、预测疾病风险以及制定增强临床试验的策略。心血管数字孪生的当前应用已将多模态数据整合到机制模型和统计模型中,以构建生理上准确的心脏复制品,从而加强疾病表型分析、丰富诊断流程并优化手术规划。随着新的数据模式不断涌现以及生成式人工智能取得进展,数字孪生技术正在迅速发展,能够实现针对个体的动态和全面模拟。这些数字孪生将生理、环境和医疗数据融合到机器学习和生成模型中,以建立实时患者预测,从而模拟与临床环境的相互作用,加速个性化患者护理。本综述通过纳入新的个性化数据模式,总结了心血管医学中的数字孪生及其未来潜在应用。它探讨了深度学习和生成式人工智能方面的技术进步,这些进步拓宽了数字孪生的范围和预测能力。最后,它强调了个体和社会挑战以及伦理考量,这些对于实现将心脏病数字孪生纳入个性化心血管护理的未来愿景至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验