Suppr超能文献

基于 F-FDG PET/CT 影像组学的可解释模型预测肺腺癌表皮生长因子受体基因突变状态:一项多中心研究。

Explainable F-FDG PET/CT radiomics model for predicting EGFR mutation status in lung adenocarcinoma: a two-center study.

机构信息

Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China.

Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, 200032, P. R. China.

出版信息

J Cancer Res Clin Oncol. 2024 Oct 22;150(10):469. doi: 10.1007/s00432-024-05998-7.

Abstract

PURPOSE

To establish an explainable F-FDG PET/CT-derived prediction model to identify EGFR mutation status and subtypes (EGFR wild, EGFR-E19, and EGFR-E21) in lung adenocarcinoma (LUAD).

METHODS

Baseline F-FDG PET/CT images of 478 patients with LUAD from 2 hospitals were collected. Data from hospital A (n = 390) was randomly split into a training group (n = 312) and an internal test group (n = 78), with data from hospital B (n = 88) utilized for external test. Further, a total of 4,760 handcrafted radiomics features (HRFs) were extracted from PET/CT scans. Candidates for the prediction model were constructed by cross-combinations of 11 feature selection methods and 7 classifiers. The optimal model was determined by combining the results of cross-center data validation and model visualization (Yellowbrick). The predictive performance was assessed via receiver operating characteristic curve, confusion matrix and classification report. Four explainable artificial intelligence technologies were used for optimal model interpretation.

RESULTS

Sex and SUV were selected as clinical risk factors, which were then combined with 8 robust PET/CT HRFs to establish the models. The optimal performance was obtained by combining a light gradient boosting machine classifier with random forest feature selection method achieving an optimal performance with a macro-average AUC of 0.75 in the internal test group and 0.81 in the external test group.

CONCLUSION

The explainable EGFR mutation status prediction model have certain clinical practicability and good generalization performance, which may help in the timely selection of treatment options and prognosis prediction in patients with LUAD.

摘要

目的

建立一个可解释的 F-FDG PET/CT 衍生预测模型,以识别肺腺癌(LUAD)中的表皮生长因子受体(EGFR)突变状态和亚型(EGFR 野生型、EGFR-E19 和 EGFR-E21)。

方法

收集来自 2 家医院的 478 例 LUAD 患者的基线 F-FDG PET/CT 图像。来自医院 A(n=390)的数据随机分为训练组(n=312)和内部测试组(n=78),来自医院 B(n=88)的数据用于外部测试。此外,从 PET/CT 扫描中提取了总共 4760 个人工放射组学特征(HRFs)。通过 11 种特征选择方法和 7 种分类器的交叉组合构建预测模型的候选者。通过跨中心数据验证和模型可视化(Yellowbrick)的结果结合来确定最优模型。通过接收者操作特征曲线、混淆矩阵和分类报告评估预测性能。使用 4 种可解释的人工智能技术对最优模型进行解释。

结果

选择性别和 SUV 作为临床危险因素,然后将其与 8 个稳健的 PET/CT HRFs 结合建立模型。通过将轻梯度提升机分类器与随机森林特征选择方法相结合,在内部测试组和外部测试组中获得了最佳性能,其宏平均 AUC 分别为 0.75 和 0.81。

结论

可解释的 EGFR 突变状态预测模型具有一定的临床实用性和良好的泛化性能,可能有助于及时选择 LUAD 患者的治疗方案和预后预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee1/11793380/54f98e5b2e90/432_2024_5998_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验