Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
Physiol Genomics. 2024 Dec 1;56(12):876-895. doi: 10.1152/physiolgenomics.00011.2024. Epub 2024 Oct 22.
Glioblastoma multiforme (GBM) is one of the most common and aggressive type of malignant glioma with an average survival time of 12-18 mo. Despite the utilization of extensive surgical resections using cutting-edge neuroimaging, and advanced chemotherapy and radiotherapy, the prognosis remains unfavorable. The heterogeneity of GBM and the presence of the blood-brain barrier further complicate the therapeutic process. It is crucial to adopt a multifaceted approach in GBM research to understand its biology and advance toward effective treatments. In particular, omics research, which primarily includes genomics, transcriptomics, proteomics, and epigenomics, helps us understand how GBM develops, finds biomarkers, and discovers new therapeutic targets. The availability of large-scale multiomics data requires the development of computational models to infer valuable biological insights for the implementation of precision medicine. Artificial intelligence (AI) refers to a host of computational algorithms that is becoming a major tool capable of integrating large omics databases. Although the application of AI tools in GBM-omics is currently in its early stages, a thorough exploration of AI utilization to uncover different aspects of GBM (subtype classification, prognosis, and survival) would have a significant impact on both researchers and clinicians. Here, we aim to review and provide database resources of different AI-based techniques that have been used to study GBM pathogenesis using multiomics data over the past decade. We summarize different types of GBM-related omics resources that can be used to develop AI models. Furthermore, we explore various AI tools that have been developed using either individual or integrated multiomics data, highlighting their applications and limitations in the context of advancing GBM research and treatment.
多形性胶质母细胞瘤(GBM)是最常见和侵袭性最强的恶性胶质瘤之一,平均存活时间为 12-18 个月。尽管利用先进的神经影像学进行广泛的手术切除,并采用先进的化疗和放疗,预后仍然不佳。GBM 的异质性和血脑屏障的存在进一步使治疗过程复杂化。在 GBM 研究中采用多方面的方法来了解其生物学特性并朝着有效的治疗方法前进是至关重要的。特别是,组学研究,主要包括基因组学、转录组学、蛋白质组学和表观基因组学,有助于我们了解 GBM 是如何发展的,寻找生物标志物,并发现新的治疗靶点。大规模多组学数据的可用性需要开发计算模型,以便从实施精准医学的角度推断出有价值的生物学见解。人工智能(AI)是指一系列计算算法,它正在成为一种能够整合大型组学数据库的主要工具。虽然人工智能工具在 GBM-omics 中的应用目前还处于早期阶段,但深入探讨人工智能的应用,以揭示 GBM 的不同方面(亚型分类、预后和生存),将对研究人员和临床医生产生重大影响。在这里,我们旨在回顾并提供过去十年中使用多组学数据研究 GBM 发病机制的不同基于人工智能的技术的数据库资源。我们总结了不同类型的与 GBM 相关的组学资源,可用于开发人工智能模型。此外,我们还探讨了使用单个或集成多组学数据开发的各种人工智能工具,突出了它们在推进 GBM 研究和治疗方面的应用和局限性。