Suppr超能文献

基于抗体 CDRH3 中的短基序预测抗原结合。

Predictability of antigen binding based on short motifs in the antibody CDRH3.

机构信息

Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway.

Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae537.

Abstract

Adaptive immune receptors, such as antibodies and T-cell receptors, recognize foreign threats with exquisite specificity. A major challenge in adaptive immunology is discovering the rules governing immune receptor-antigen binding in order to predict the antigen binding status of previously unseen immune receptors. Many studies assume that the antigen binding status of an immune receptor may be determined by the presence of a short motif in the complementarity determining region 3 (CDR3), disregarding other amino acids. To test this assumption, we present a method to discover short motifs which show high precision in predicting antigen binding and generalize well to unseen simulated and experimental data. Our analysis of a mutagenesis-based antibody dataset reveals 11 336 position-specific, mostly gapped motifs of 3-5 amino acids that retain high precision on independently generated experimental data. Using a subset of only 178 motifs, a simple classifier was made that on the independently generated dataset outperformed a deep learning model proposed specifically for such datasets. In conclusion, our findings support the notion that for some antibodies, antigen binding may be largely determined by a short CDR3 motif. As more experimental data emerge, our methodology could serve as a foundation for in-depth investigations into antigen binding signals.

摘要

适应性免疫受体,如抗体和 T 细胞受体,以极高的特异性识别外来威胁。适应性免疫学的一个主要挑战是发现支配免疫受体-抗原结合的规则,以便预测以前未见过的免疫受体的抗原结合状态。许多研究假设免疫受体的抗原结合状态可能由互补决定区 3(CDR3)中短基序的存在决定,而忽略其他氨基酸。为了检验这一假设,我们提出了一种发现短基序的方法,该方法在预测抗原结合方面具有高精度,并且可以很好地推广到未见的模拟和实验数据。我们对基于诱变的抗体数据集的分析揭示了 11336 个位置特异性、主要带缺口的 3-5 个氨基酸的基序,在独立生成的实验数据上保持高精度。使用仅 178 个基序的子集,制作了一个简单的分类器,在独立生成的数据集上的表现优于专门为此类数据集提出的深度学习模型。总之,我们的研究结果支持这样一种观点,即对于一些抗体来说,抗原结合可能主要由短的 CDR3 基序决定。随着更多实验数据的出现,我们的方法可以为深入研究抗原结合信号提供基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54d/11495870/fb44cf124095/bbae537f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验