Suppr超能文献

The link between multiplicative competitive interaction models and compositional data regression with a total.

作者信息

Dargel Lukas, Thomas-Agnan Christine

机构信息

Toulouse School of Economics, University of Toulouse Capitole, Toulouse France.

BVA Data Factory, Toulouse, France.

出版信息

J Appl Stat. 2024 Mar 16;51(14):2929-2960. doi: 10.1080/02664763.2024.2329923. eCollection 2024.

Abstract

This article sheds light on the relationship between compositional data (CoDa) regression models and multiplicative competitive interaction (MCI) models, which are two approaches for modeling shares. We demonstrate that MCI models are particular cases of CoDa models with a total and that a reparameterization links both. Recognizing this relation offers mutual benefits for the CoDa and MCI literature, each with its own rich tradition. The CoDa tradition, with its rigorous mathematical foundation, provides additional theoretical guarantees and mathematical tools that we apply to improve the estimation of MCI models. Simultaneously, the MCI model emerged from almost a century-long tradition in marketing research that may enrich the CoDa literature. One aspect is the grounding of the MCI specification in assumptions on the behavior of individuals. From this basis, the MCI tradition also provides credible justifications for heteroskedastic error structures - an idea we develop further and that is relevant to many CoDa models beyond the marketing context. Additionally, MCI models have always been interpreted in terms of elasticities, a method that has only recently emerged in CoDa. Regarding this interpretation, the CoDa perspective leads to a decomposition of the influence of the explanatory variables into contributions from relative and absolute information.

摘要

相似文献

1
The link between multiplicative competitive interaction models and compositional data regression with a total.
J Appl Stat. 2024 Mar 16;51(14):2929-2960. doi: 10.1080/02664763.2024.2329923. eCollection 2024.
3
比较标准数据分析和成分数据分析在研究中处理久坐行为和体力活动的组间差异。
Int J Behav Nutr Phys Act. 2018 Jun 15;15(1):53. doi: 10.1186/s12966-018-0685-1.
4
成分脑评分可捕捉阿尔茨海默病在疾病连续过程中特定的脑结构模式。
Alzheimers Dement. 2025 Feb;21(2):e14490. doi: 10.1002/alz.14490. Epub 2025 Jan 27.
5
社区步行环境与中高强度身体活动的关联:应用组合数据分析比较组合和非组合方法。
Int J Behav Nutr Phys Act. 2022 May 18;19(1):55. doi: 10.1186/s12966-022-01256-6.
6
不同情境干扰训练方案对小学生直线冲刺和敏捷性表现的影响。
J Sports Sci Med. 2013 Sep 1;12(3):601-7. eCollection 2013.
7
运用CoDa方法分析社会经济因素对法国省级选举的影响。
J Appl Stat. 2020 Dec 9;49(5):1235-1251. doi: 10.1080/02664763.2020.1858274. eCollection 2022.
9
2004 年至 2014 年间越南社会经济因素与营养饮食之间的关系:使用成分数据分析的新见解。
Stat Methods Med Res. 2019 Aug;28(8):2305-2325. doi: 10.1177/0962280218770223. Epub 2018 Apr 23.
10
固定和可变总量的成分数据分析方法比较:以时间使用和饮食数据为例的模拟研究
BMC Med Res Methodol. 2025 Apr 17;25(1):100. doi: 10.1186/s12874-025-02509-1.

本文引用的文献

1
具有成分响应变量和协变量的偏最小二乘回归。
J Appl Stat. 2020 Jul 22;48(16):3130-3149. doi: 10.1080/02664763.2020.1795813. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验