Suppr超能文献

具有成分响应变量和协变量的偏最小二乘回归。

Partial least squares regression with compositional response variables and covariates.

作者信息

Chen Jiajia, Zhang Xiaoqin, Hron Karel

机构信息

School of Statistics, Shanxi University of Finance and Economics, Taiyuan, People's Republic of China.

Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, Olomouc, Czech Republic.

出版信息

J Appl Stat. 2020 Jul 22;48(16):3130-3149. doi: 10.1080/02664763.2020.1795813. eCollection 2021.

Abstract

The common approach for regression analysis with compositional variables is to express compositions in log-ratio coordinates (coefficients) and then perform standard statistical processing in real space. Similar to working in real space, the problem is that the standard least squares regression fails when the number of parts of all compositional covariates is higher than the number of observations. The aim of this study is to analyze in detail the partial least squares (PLS) regression which can deal with this problem. In this paper, we focus on the PLS regression between more than one compositional response variable and more than one compositional covariate. First, we give the PLS regression model with log-ratio coordinates of compositional variables, then we express the PLS model directly in the simplex. We also prove that the PLS model is invariant under the change of coordinate system, such as the ilr coordinates with a different contrast matrix or the clr coefficients. Moreover, we give the estimation and inference for parameters in PLS model. Finally, the PLS model with clr coefficients is used to analyze the relationship between the chemical metabolites of Astragali Radix and the plasma metabolites of rat after giving Astragali Radix.

摘要

处理成分变量回归分析的常用方法是在对数比坐标(系数)中表示成分,然后在实空间中进行标准统计处理。与在实空间中工作类似,问题在于当所有成分协变量的份数高于观测数时,标准最小二乘回归会失效。本研究的目的是详细分析能够处理此问题的偏最小二乘(PLS)回归。在本文中,我们关注多个成分响应变量与多个成分协变量之间的PLS回归。首先,我们给出具有成分变量对数比坐标的PLS回归模型,然后直接在单纯形中表示PLS模型。我们还证明了PLS模型在坐标系变化下是不变的,例如具有不同对比矩阵的ilr坐标或clr系数。此外,我们给出了PLS模型中参数的估计和推断。最后,使用具有clr系数的PLS模型分析黄芪给药后大鼠血浆代谢物与黄芪化学代谢物之间的关系。

相似文献

1
Partial least squares regression with compositional response variables and covariates.
J Appl Stat. 2020 Jul 22;48(16):3130-3149. doi: 10.1080/02664763.2020.1795813. eCollection 2021.
4
The Spike-and-Slab Lasso regression modeling with compositional covariates: An application on Brazilian children malnutrition data.
Stat Methods Med Res. 2020 May;29(5):1434-1446. doi: 10.1177/0962280219863817. Epub 2019 Jul 23.
5
Rapid analysis of Radix Astragali using a portable Raman spectrometer with 1064-nm laser excitation and data fusion with PLS-DA.
Spectrochim Acta A Mol Biomol Spectrosc. 2024 May 15;313:124087. doi: 10.1016/j.saa.2024.124087. Epub 2024 Feb 28.
6
Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data.
Bioinformatics. 2015 Feb 1;31(3):397-404. doi: 10.1093/bioinformatics/btu660. Epub 2014 Oct 6.
9
Improved variable reduction in partial least squares modelling by Global-Minimum Error Uninformative-Variable Elimination.
Anal Chim Acta. 2017 Aug 22;982:37-47. doi: 10.1016/j.aca.2017.06.001. Epub 2017 Jun 16.
10
Rapid identification of Radix Astragali origin by using fluorescence probe combined with chemometrics.
Spectrochim Acta A Mol Biomol Spectrosc. 2024 May 5;312:124080. doi: 10.1016/j.saa.2024.124080. Epub 2024 Feb 24.

引用本文的文献

1
Composition-on-composition regression analysis for multi-omics integration of metagenomic data.
Bioinformatics. 2025 Jul 1;41(7). doi: 10.1093/bioinformatics/btaf387.
2
The link between multiplicative competitive interaction models and compositional data regression with a total.
J Appl Stat. 2024 Mar 16;51(14):2929-2960. doi: 10.1080/02664763.2024.2329923. eCollection 2024.
3
Analyzing the impacts of socio-economic factors on French departmental elections with CoDa methods.
J Appl Stat. 2020 Dec 9;49(5):1235-1251. doi: 10.1080/02664763.2020.1858274. eCollection 2022.

本文引用的文献

1
Comparison of Two Different Astragali Radix by a ¹H NMR-Based Metabolomic Approach.
J Proteome Res. 2015 May 1;14(5):2005-16. doi: 10.1021/pr501167u. Epub 2015 Apr 16.
2
Dirichlet Component Regression and its Applications to Psychiatric Data.
Comput Stat Data Anal. 2008 Aug 15;52(12):5344-5355. doi: 10.1016/j.csda.2008.05.030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验