Suppr超能文献

比较随机对照试验中分析患者报告结局的统计方法:一项模拟研究。

Comparison of statistical methods for the analysis of patient-reported outcomes in randomised controlled trials: A simulation study.

机构信息

Centre for Health Economics, University of York, York, UK.

Division of Population Health, School of Medicine & Population Health, University of Sheffield, Sheffield, UK.

出版信息

Stat Methods Med Res. 2024 Nov;33(11-12):1920-1938. doi: 10.1177/09622802241275361. Epub 2024 Oct 23.

Abstract

Patient-reported outcomes (PROs) that aim to measure patients' subjective attitudes towards their health or health-related conditions in various fields have been increasingly used in randomised controlled trials (RCTs). PRO data is likely to be bounded, discrete, and skewed. Although various statistical methods are available for the analysis of PROs in RCT settings, there is no consensus on what statistical methods are the most appropriate for use. This study aims to use simulation methods to compare the performance (in terms of bias, empirical standard error, coverage of the confidence interval, Type I error, and power) of three different statistical methods, multiple linear regression (MLR), Tobit regression (Tobit), and median regression (Median), to estimate a range of predefined treatment effects for a PRO in a two-arm balanced RCT. We assumed there was an underlying latent continuous outcome that the PRO was measuring, but the actual scores observed were equally spaced and discrete. This study found that MLR was associated with little bias of the estimated treatment effect, small standard errors, and appropriate coverage of the confidence interval under most scenarios. Tobit performed worse than MLR for analysing PROs with a small number of levels, but it had better performance when analysing PROs with more discrete values. Median showed extremely large bias and errors, associated with low power and coverage for most scenarios especially when the number of possible discrete values was small. We recommend MLR as a simple and universal statistical method for the analysis of PROs in RCT settings.

摘要

患者报告的结局(PROs)旨在测量患者在各个领域对其健康或与健康相关状况的主观态度,已越来越多地用于随机对照试验(RCTs)中。PRO 数据可能是有界的、离散的和偏态的。尽管有各种统计方法可用于分析 RCT 中的 PRO,但对于最适合使用哪种统计方法尚未达成共识。本研究旨在使用模拟方法比较三种不同统计方法(多元线性回归(MLR)、Tobit 回归(Tobit)和中位数回归(Median))在估计 PRO 中一系列预设治疗效果方面的性能(偏倚、经验标准误差、置信区间的覆盖范围、I 型错误和功效),对于两臂平衡 RCT 中的 PRO。我们假设存在一个潜在的连续潜在结果,PRO 正在测量,但实际观察到的分数是等距和离散的。本研究发现,在大多数情况下,MLR 与估计治疗效果的小偏差、小标准误差和置信区间的适当覆盖相关。Tobit 在分析具有少量水平的 PRO 时表现不如 MLR,但在分析具有更多离散值的 PRO 时表现更好。中位数表现出极大的偏差和误差,与大多数情况下的低功效和覆盖范围相关,尤其是当可能的离散值数量较小时。我们建议 MLR 作为分析 RCT 中 PRO 的简单通用统计方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b72e/11577693/2e446c91d8bb/10.1177_09622802241275361-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验