Liu Kan-Zhi, Tian Ganghong, Ko Alex C-T, Geissler Matthias, Malic Lidija, Moon Byeong-Ui, Clime Liviu, Veres Teodor
Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada.
Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
Analyst. 2024 Dec 16;150(1):9-33. doi: 10.1039/d4an00957f.
Acute respiratory tract infections (ARTIs) are caused by sporadic or pandemic outbreaks of viral or bacterial pathogens, and continue to be a considerable socioeconomic burden for both developing and industrialized countries alike. Diagnostic methods and technologies serving as the cornerstone for disease management, epidemiological tracking, and public health interventions are evolving continuously to keep up with the demand for higher sensitivity, specificity and analytical throughput. Microfluidics is becoming a key technology in these developments as it allows for integrating, miniaturizing and automating bioanalytical assays at an unprecedented scale, reducing sample and reagent consumption and improving diagnostic performance in terms of sensitivity, throughput and response time. In this article, we describe relevant ARTIs-pneumonia, influenza, severe acute respiratory syndrome, and coronavirus disease 2019-along with their pathogenesis. We provide a summary of established methods for disease diagnosis, involving nucleic acid amplification techniques, antigen detection, serological testing as well as microbial culture. This is followed by a short introduction to microfluidics and how flow is governed at low volume and reduced scale using centrifugation, pneumatic pumping, electrowetting, capillary action, and propagation in porous media through wicking, for each of these principles impacts the design, functioning and performance of diagnostic tools in a particular way. We briefly cover commercial instruments that employ microfluidics for use in both laboratory and point-of-care settings. The main part of the article is dedicated to emerging methods deriving from the use of miniaturized, microfluidic systems for ARTI diagnosis. Finally, we share our thoughts on future perspectives and the challenges associated with validation, approval, and adaptation of microfluidic-based systems.
急性呼吸道感染(ARTIs)由病毒或细菌病原体的散发性或大流行性爆发引起,对发展中国家和工业化国家而言,仍然是一项相当大的社会经济负担。作为疾病管理、流行病学追踪和公共卫生干预基石的诊断方法和技术正在不断发展,以满足对更高灵敏度、特异性和分析通量的需求。微流控技术正成为这些发展中的一项关键技术,因为它能够以前所未有的规模集成、小型化和自动化生物分析检测,减少样品和试剂消耗,并在灵敏度、通量和响应时间方面提高诊断性能。在本文中,我们描述了相关的急性呼吸道感染——肺炎、流感、严重急性呼吸综合征和2019冠状病毒病——及其发病机制。我们总结了已确立的疾病诊断方法,包括核酸扩增技术、抗原检测、血清学检测以及微生物培养。接下来简要介绍微流控技术,以及如何利用离心、气动泵、电润湿、毛细作用以及通过毛细作用在多孔介质中的传播在小体积和缩小规模下控制流体流动,因为这些原理中的每一个都会以特定方式影响诊断工具的设计、功能和性能。我们简要介绍了在实验室和即时检测环境中使用微流控技术的商用仪器。本文的主要部分致力于介绍源自使用小型化微流控系统进行急性呼吸道感染诊断的新兴方法。最后,我们分享了对未来前景以及与基于微流控系统的验证、批准和应用相关挑战的看法。