Fan Qiaoling, Willson Maggie C, Foell Kristen A, Paley Daniel W, Kotei Patience A, Schriber Elyse A, Rosenberg Daniel J, Rani Komal, Tchoń Daniel M, Zeller Matthias, Melendrez Cynthia, Kang Jungmin, Inoue Ichiro, Owada Shigeki, Tono Kensuke, Sugahara Michihiro, Brewster Aaron S, Hohman J Nathan
Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States.
Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States.
J Am Chem Soc. 2024 Nov 6;146(44):30349-30360. doi: 10.1021/jacs.4c10426. Epub 2024 Oct 23.
We report nucleophilic displacement reactions that can increase the dimensionality or coordination number of silver-based metal-organic chalcogenolates (MOChas). MOChas are crystalline ensembles containing one-dimensional (1D) or two-dimensional (2D) inorganic topologies with structures and properties defined by the choice of metal, chalcogen, and ligand. MOChas can be readily prepared from a variety of small-molecule ligands and metals or metal ions. Although MOChas offer ligand diversity, most reported examples use relatively small ligands, typically involving short alkyl chains, aryl rings, or molecular cages. This is because larger, more complex molecules often yield poor product morphologies with indeterminate structures. In this study, we overcame this limitation by employing a ligand exchange strategy whereby a 1D MOCha, silver(I) methyl 2-mercaptobenzoate (2MMB), is used as a silver source for preparing 2D examples. The reaction proceeds generally toward products composed of the stronger nucleophile. We show that the reaction prefers displacing 1D topologies to yield 2D ones and replacing thiolates with selenolates. We performed a study to characterize the mechanism by which organic chalcogenols and dichalcogenides exchange with MOChas. The collected data and product analysis support a proposed mechanism of nucleophilic substitution, explaining how both organic chalcogenols and dichalcogenides can displace ligands in MOChas. This work provides a new synthetic route that will enable the preparation of more elaborate MOChas and heterostructures thereof. This approach enabled the preparation of previously inaccessible oligophenyl MOChas, which were successfully solved via small-molecule serial femtosecond crystallography (smSFX) at the SPring-8 Ångström Compact Free Electron LAser (SACLA) facility.
我们报道了亲核取代反应,该反应能够增加银基金属有机硫属化合物(MOChas)的维度或配位数。MOChas是包含一维(1D)或二维(2D)无机拓扑结构的晶体组合,其结构和性质由金属、硫属元素和配体的选择决定。MOChas可以很容易地由各种小分子配体与金属或金属离子制备而成。尽管MOChas具有配体多样性,但大多数已报道的例子使用的是相对较小的配体,通常涉及短烷基链、芳基环或分子笼。这是因为更大、更复杂的分子往往会产生结构不确定的不良产物形态。在本研究中,我们通过采用配体交换策略克服了这一限制,即使用一维MOCha,即甲基2 - 巯基苯甲酸银(I)(2MMB)作为银源来制备二维实例。该反应通常朝着由更强亲核试剂组成的产物进行。我们表明,该反应更倾向于取代一维拓扑结构以生成二维拓扑结构,并用硒醇盐取代硫醇盐。我们进行了一项研究来表征有机硫醇和二硫属化物与MOChas交换的机制。收集的数据和产物分析支持了亲核取代的 proposed 机制,解释了有机硫醇和二硫属化物如何能够取代MOChas中的配体。这项工作提供了一条新的合成路线,将能够制备更精细的MOChas及其异质结构。这种方法使得制备以前无法获得的寡苯基MOChas成为可能,这些寡苯基MOChas在SPring - 8埃紧凑型自由电子激光(SACLA)设施中通过小分子串联飞秒晶体学(smSFX)成功解析。