Suppr超能文献

微波辅助合成金属有机硫属化合物组装体作为合成气生产的电催化剂。

Microwave-assisted synthesis of metal-organic chalcogenolate assemblies as electrocatalysts for syngas production.

作者信息

Rabl Hannah, Myakala Stephen Nagaraju, Rath Jakob, Fickl Bernhard, Schubert Jasmin S, Apaydin Dogukan H, Eder Dominik

机构信息

Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.

出版信息

Commun Chem. 2023 Mar 1;6(1):43. doi: 10.1038/s42004-023-00843-3.

Abstract

Today, many essential industrial processes depend on syngas. Due to a high energy demand and overall cost as well as a dependence on natural gas as its precursor, alternative routes to produce this valuable mixture of hydrogen and carbon monoxide are urgently needed. Electrochemical syngas production via two competing processes, namely carbon dioxide (CO) reduction and hydrogen (H) evolution, is a promising method. Often, noble metal catalysts such as gold or silver are used, but those metals are costly and have limited availability. Here, we show that metal-organic chalcogenolate assemblies (MOCHAs) combine several properties of successful electrocatalysts. We report a scalable microwave-assisted synthesis method for highly crystalline MOCHAs ([AgXPh] : X = Se, S) with high yields. The morphology, crystallinity, chemical and structural stability are thoroughly studied. We investigate tuneable syngas production via electrocatalytic CO reduction and find the MOCHAs show a maximum Faraday efficiency (FE) of 55 and 45% for the production of carbon monoxide and hydrogen, respectively.

摘要

如今,许多重要的工业过程都依赖合成气。由于能源需求高、总成本高以及依赖天然气作为其前驱体,迫切需要生产这种有价值的氢气和一氧化碳混合物的替代路线。通过两个相互竞争的过程,即二氧化碳(CO)还原和氢气(H)析出进行电化学合成气生产是一种很有前景的方法。通常会使用金或银等贵金属催化剂,但这些金属成本高昂且供应有限。在此,我们表明金属有机硫族化合物组装体(MOCHA)兼具成功的电催化剂的多种特性。我们报道了一种可扩展的微波辅助合成方法,用于高产率地合成高度结晶的MOCHA([AgXPh]:X = Se,S)。对其形态、结晶度、化学和结构稳定性进行了深入研究。我们通过电催化CO还原研究了可调谐的合成气生产,发现MOCHA在一氧化碳和氢气生产中的最大法拉第效率(FE)分别为55%和45%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/9977941/9d80c36ac339/42004_2023_843_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验