Suppr超能文献

基于 gnomAD 的东亚参考框架的跨人群增强 PrediXcan 预测。

Cross-population enhancement of PrediXcan predictions with a gnomAD-based east Asian reference framework.

机构信息

Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Room 518, No. 17, Xu-Zhou Road, Taipei 10055, Taiwan.

Institute of Health Data Analytics and Statistics, Department of Public Health, National Taiwan University, Room 518, No. 17, Xu-Zhou Road, Taipei 10055, Taiwan.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae549.

Abstract

Over the past decade, genome-wide association studies have identified thousands of variants significantly associated with complex traits. For each locus, gene expression levels are needed to further explore its biological functions. To address this, the PrediXcan algorithm leverages large-scale reference data to impute the gene expression level from single nucleotide polymorphisms, and thus the gene-trait associations can be tested to identify the candidate causal genes. However, a challenge arises due to the fact that most reference data are from subjects of European ancestry, and the accuracy and robustness of predicted gene expression in subjects of East Asian (EAS) ancestry remains unclear. Here, we first simulated a variety of scenarios to explore the impact of the level of population diversity on gene expression. Population differentiated variants were estimated by using the allele frequency information from The Genome Aggregation Database. We found that the weights of a variants was the main factor that affected the gene expression predictions, and that ~70% of variants were significantly population differentiated based on proportion tests. To provide insights into this population effect on gene expression levels, we utilized the allele frequency information to develop a gene expression reference panel, Predict Asian-Population (PredictAP), for EAS ancestry. PredictAP can be viewed as an auxiliary tool for PrediXcan when using genotype data from EAS subjects.

摘要

在过去的十年中,全基因组关联研究已经确定了数千个与复杂性状显著相关的变体。对于每个基因座,需要基因表达水平来进一步探索其生物学功能。为了解决这个问题,PrediXcan 算法利用大规模参考数据从单核苷酸多态性推断基因表达水平,从而可以测试基因-性状关联,以确定候选因果基因。然而,由于大多数参考数据来自欧洲血统的受试者,因此东亚(EAS)血统受试者中预测基因表达的准确性和稳健性尚不清楚。在这里,我们首先模拟了各种情况,以探讨人口多样性水平对基因表达的影响。通过使用来自基因组聚合数据库的等位基因频率信息来估计人口分化的变体。我们发现变体的权重是影响基因表达预测的主要因素,并且基于比例检验,约 70%的变体是显著的人口分化。为了深入了解这种人口对基因表达水平的影响,我们利用等位基因频率信息为东亚血统开发了一个基因表达参考面板,称为 Predict Asian-Population(PredictAP)。PredictAP 可以被视为使用东亚血统受试者的基因型数据时 PrediXcan 的辅助工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/11497844/88afdd4d26b1/bbae549f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验