State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.
University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
J Med Chem. 2024 Nov 14;67(21):18969-18980. doi: 10.1021/acs.jmedchem.4c01416. Epub 2024 Oct 23.
DNA-encoded library (DEL) technology is an effective method for small molecule drug discovery, enabling high-throughput screening against target proteins. While DEL screening produces extensive data, it can reveal complex patterns not easily recognized by human analysis. Lead compounds from DEL screens often have higher molecular weights, posing challenges for drug development. This study refines traditional DELs by integrating alternative techniques like photocross-linking screening to enhance chemical diversity. Combining these methods improved predictive performance for small molecule identification models. Using this approach, we predicted active small molecules for BRD4 and p300, achieving hit rates of 26.7 and 35.7%. Notably, the identified compounds exhibit smaller molecular weights and better modification potential compared to traditional DEL molecules. This research demonstrates the synergy between DEL and AI technologies, enhancing drug discovery.
DNA 编码文库(DEL)技术是一种有效的小分子药物发现方法,可针对靶蛋白进行高通量筛选。虽然 DEL 筛选会产生大量数据,但其中包含的复杂模式可能难以被人工分析所识别。DEL 筛选得到的先导化合物通常分子量较高,这给药物开发带来了挑战。本研究通过整合光交联筛选等替代技术来改进传统的 DEL,从而提高化学多样性。将这些方法相结合可以提高小分子鉴定模型的预测性能。使用这种方法,我们对 BRD4 和 p300 进行了活性小分子预测,获得了 26.7%和 35.7%的命中率。值得注意的是,与传统的 DEL 分子相比,所鉴定的化合物具有更小的分子量和更好的修饰潜力。这项研究展示了 DEL 和人工智能技术之间的协同作用,可增强药物发现。