Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, United Kingdom, 44 02078480924.
Institute of Health Informatics, University College London, London, United Kingdom.
JMIR Ment Health. 2024 Oct 23;11:e51259. doi: 10.2196/51259.
The use of digital biomarkers through remote patient monitoring offers valuable and timely insights into a patient's condition, including aspects such as disease progression and treatment response. This serves as a complementary resource to traditional health care settings leveraging mobile technology to improve scale and lower latency, cost, and burden.
Smartphones with embedded and connected sensors have immense potential for improving health care through various apps and mobile health (mHealth) platforms. This capability could enable the development of reliable digital biomarkers from long-term longitudinal data collected remotely from patients.
We built an open-source platform, RADAR-base, to support large-scale data collection in remote monitoring studies. RADAR-base is a modern remote data collection platform built around Confluent's Apache Kafka to support scalability, extensibility, security, privacy, and quality of data. It provides support for study design and setup and active (eg, patient-reported outcome measures) and passive (eg, phone sensors, wearable devices, and Internet of Things) remote data collection capabilities with feature generation (eg, behavioral, environmental, and physiological markers). The back end enables secure data transmission and scalable solutions for data storage, management, and data access.
The platform has been used to successfully collect longitudinal data for various cohorts in a number of disease areas including multiple sclerosis, depression, epilepsy, attention-deficit/hyperactivity disorder, Alzheimer disease, autism, and lung diseases. Digital biomarkers developed through collected data are providing useful insights into different diseases.
RADAR-base offers a contemporary, open-source solution driven by the community for remotely monitoring, collecting data, and digitally characterizing both physical and mental health conditions. Clinicians have the ability to enhance their insight through the use of digital biomarkers, enabling improved prevention, personalization, and early intervention in the context of disease management.
通过远程患者监测使用数字生物标志物可提供有价值且及时的患者病情洞察,包括疾病进展和治疗反应等方面。这是对利用移动技术提高规模、降低延迟、成本和负担的传统医疗保健设置的补充资源。
具有嵌入式和连接传感器的智能手机通过各种应用程序和移动健康(mHealth)平台具有改善医疗保健的巨大潜力。这一功能可以从患者远程收集的长期纵向数据中开发出可靠的数字生物标志物。
我们构建了一个名为 RADAR-base 的开源平台,以支持远程监测研究中的大规模数据收集。RADAR-base 是一个围绕 Confluent 的 Apache Kafka 构建的现代远程数据收集平台,可支持可扩展性、可扩展性、安全性、隐私性和数据质量。它为研究设计和设置以及主动(例如,患者报告的结果测量)和被动(例如,电话传感器、可穿戴设备和物联网)远程数据收集功能提供支持,并具有特征生成功能(例如,行为、环境和生理标志物)。后端为数据传输提供了安全保障,为数据存储、管理和数据访问提供了可扩展的解决方案。
该平台已成功用于多个疾病领域的各种队列的纵向数据收集,包括多发性硬化症、抑郁症、癫痫、注意力缺陷/多动障碍、阿尔茨海默病、自闭症和肺部疾病。通过收集的数据开发的数字生物标志物正在为不同的疾病提供有用的见解。
RADAR-base 提供了一个由社区驱动的现代开源解决方案,用于远程监测、收集数据,并对身体和心理健康状况进行数字化特征描述。临床医生能够通过使用数字生物标志物增强他们的洞察力,从而在疾病管理中实现更好的预防、个性化和早期干预。