Suppr超能文献

通过手机收集的个体附近蓝牙设备计数数据预测抑郁症状严重程度:初步纵向研究。

Predicting Depressive Symptom Severity Through Individuals' Nearby Bluetooth Device Count Data Collected by Mobile Phones: Preliminary Longitudinal Study.

机构信息

Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

Institute of Health Informatics, University College London, London, United Kingdom.

出版信息

JMIR Mhealth Uhealth. 2021 Jul 30;9(7):e29840. doi: 10.2196/29840.

Abstract

BACKGROUND

Research in mental health has found associations between depression and individuals' behaviors and statuses, such as social connections and interactions, working status, mobility, and social isolation and loneliness. These behaviors and statuses can be approximated by the nearby Bluetooth device count (NBDC) detected by Bluetooth sensors in mobile phones.

OBJECTIVE

This study aimed to explore the value of the NBDC data in predicting depressive symptom severity as measured via the 8-item Patient Health Questionnaire (PHQ-8).

METHODS

The data used in this paper included 2886 biweekly PHQ-8 records collected from 316 participants recruited from three study sites in the Netherlands, Spain, and the United Kingdom as part of the EU Remote Assessment of Disease and Relapse-Central Nervous System (RADAR-CNS) study. From the NBDC data 2 weeks prior to each PHQ-8 score, we extracted 49 Bluetooth features, including statistical features and nonlinear features for measuring the periodicity and regularity of individuals' life rhythms. Linear mixed-effect models were used to explore associations between Bluetooth features and the PHQ-8 score. We then applied hierarchical Bayesian linear regression models to predict the PHQ-8 score from the extracted Bluetooth features.

RESULTS

A number of significant associations were found between Bluetooth features and depressive symptom severity. Generally speaking, along with depressive symptom worsening, one or more of the following changes were found in the preceding 2 weeks of the NBDC data: (1) the amount decreased, (2) the variance decreased, (3) the periodicity (especially the circadian rhythm) decreased, and (4) the NBDC sequence became more irregular. Compared with commonly used machine learning models, the proposed hierarchical Bayesian linear regression model achieved the best prediction metrics (R=0.526) and a root mean squared error (RMSE) of 3.891. Bluetooth features can explain an extra 18.8% of the variance in the PHQ-8 score relative to the baseline model without Bluetooth features (R=0.338, RMSE=4.547).

CONCLUSIONS

Our statistical results indicate that the NBDC data have the potential to reflect changes in individuals' behaviors and statuses concurrent with the changes in the depressive state. The prediction results demonstrate that the NBDC data have a significant value in predicting depressive symptom severity. These findings may have utility for the mental health monitoring practice in real-world settings.

摘要

背景

心理健康研究发现,抑郁与个体的行为和状态之间存在关联,例如社交联系和互动、工作状态、活动能力以及社会隔离和孤独感。这些行为和状态可以通过移动电话中的蓝牙传感器检测到的附近蓝牙设备计数 (NBDC) 来近似表示。

目的

本研究旨在探索 NBDC 数据在预测使用 8 项患者健康问卷 (PHQ-8) 测量的抑郁症状严重程度方面的价值。

方法

本文使用的数据包括来自荷兰、西班牙和英国三个研究地点的 316 名参与者的 2886 份每两周一次的 PHQ-8 记录,这些参与者是欧盟远程疾病评估和复发-中枢神经系统 (RADAR-CNS) 研究的一部分。从每个 PHQ-8 评分前两周的 NBDC 数据中,我们提取了 49 个蓝牙特征,包括用于测量个体生命节奏周期性和规律性的统计特征和非线性特征。使用线性混合效应模型来探索蓝牙特征与 PHQ-8 评分之间的关联。然后,我们应用分层贝叶斯线性回归模型,从提取的蓝牙特征预测 PHQ-8 评分。

结果

发现蓝牙特征与抑郁症状严重程度之间存在一些显著关联。一般来说,随着抑郁症状的恶化,在 NBDC 数据的前两周内发现以下一种或多种变化:(1) 数量减少,(2) 方差减少,(3) 周期性(特别是昼夜节律)减少,以及 (4) NBDC 序列变得更加不规则。与常用的机器学习模型相比,提出的分层贝叶斯线性回归模型实现了最佳预测指标 (R=0.526) 和均方根误差 (RMSE) 为 3.891。与不包含蓝牙特征的基线模型相比,蓝牙特征可以解释 PHQ-8 评分方差的额外 18.8%(R=0.338,RMSE=4.547)。

结论

我们的统计结果表明,NBDC 数据有可能反映与抑郁状态变化同时发生的个体行为和状态的变化。预测结果表明,NBDC 数据在预测抑郁症状严重程度方面具有重要价值。这些发现可能对现实环境中的心理健康监测实践具有实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9636/8367113/0636d22696cf/mhealth_v9i7e29840_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验