Xue Yan, Zhou Yuxiang, Na Xiaoxu, Ou Xiawei, Liu Yongming
Arizona State University, Tempe, AZ, 85287, USA.
Mayo Clinic, Phoenix, AZ, 85054, USA.
Neuroimage Rep. 2025 Aug 26;5(3):100283. doi: 10.1016/j.ynirp.2025.100283. eCollection 2025 Sep.
Non-intrusive neuroimaging technology offers fast and robust diagnostic tools for neuro-disorder disease diagnosis, such as Attention-Deficit/Hyperactivity Disorder (ADHD). Resting-state functional magnetic imaging (rs-fMRI) has been demonstrated to have great potential for such applications due to its unique capability and convenience in providing spatial-temporal brain imaging. One critical challenge of using rs-fMRI data is the high dimensionality for both spatial and temporal domains. Thus, direct use of rs-fMRI data for the diagnosis will usually perform poorly due to the "curse of dimensionality." This paper proposes a novel nonlinear dimension reduction technique for rs-fMRI data for easy downstream analysis, such as diagnostics, regression, and visualization. The proposed method integrates the Curvature Augmented Manifold Embedding and Learning (CAMEL) algorithm with key rs-fMRI features, such as Amplitude of Low-Frequency Fluctuations (ALFF), Regional Homogeneity (ReHo), and Functional Connectivity (FC). The ADHD diagnosis problem is formulated as a classification problem in the reduced latent space and is validated with 551 data points from an open fMRI database. Compared to available literature models and results, 13 %-26 % improvement in diagnostic accuracy is observed. Additionally, the proposed methodology also supports individualized ADHA severity assessment by regression analysis in the latent space and provides a potential tool for personalized treatment. Finally, an ADHD sensitivity map is developed, highlighting brain regions associated with ADHD scores and providing interpretable insights into ADHD's neural underpinnings.
非侵入性神经成像技术为神经疾病诊断提供了快速且可靠的诊断工具,例如注意力缺陷多动障碍(ADHD)。静息态功能磁共振成像(rs-fMRI)因其独特的能力以及在提供时空脑成像方面的便利性,已被证明在这类应用中具有巨大潜力。使用rs-fMRI数据的一个关键挑战是空间和时间域的高维度性。因此,由于“维度诅咒”,直接将rs-fMRI数据用于诊断通常效果不佳。本文提出了一种用于rs-fMRI数据的新型非线性降维技术,以便于进行下游分析,如诊断、回归和可视化。所提出的方法将曲率增强流形嵌入与学习(CAMEL)算法与关键的rs-fMRI特征相结合,如低频波动幅度(ALFF)、局部一致性(ReHo)和功能连接(FC)。ADHD诊断问题被表述为在降维潜在空间中的分类问题,并使用来自一个公开fMRI数据库的551个数据点进行了验证。与现有文献模型和结果相比,观察到诊断准确率提高了13%-26%。此外,所提出的方法还通过在潜在空间中的回归分析支持个性化的ADHA严重程度评估,并为个性化治疗提供了一个潜在工具。最后,开发了一个ADHD敏感性图谱,突出了与ADHD评分相关的脑区,并为ADHD的神经基础提供了可解释的见解。