Saliba Edward P, Palani Ravi Shankar, Griffin Robert G
Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
J Magn Reson. 2024 Nov;368:107785. doi: 10.1016/j.jmr.2024.107785. Epub 2024 Oct 9.
In magic angle spinning (MAS) experiments involving uniformly C/N labeled proteins, C-C and C-N dipolar recoupling experiments are now routinely used to measure direct dipole-dipole couplings that constrain distances and torsion angles and determine molecular structures. When the distances are short (<4 Å), the direct couplings dominate the evolution of the spin system, and the C-C and C-N J-couplings (scalar couplings) are ignored. However, for structurally interesting >4 Å distances, the dipolar and J-couplings are generally of comparable magnitude, and the variation in J must be included in order to optimize the precision of the experiment. This problem is circumvented in cases with well resolved spectra by using frequency-selective dipolar recoupling methods where the effects of J-couplings are refocused. However, for larger molecules with more spectral crowding, the requisite pulse length to achieve selectivity becomes long and leads to unacceptable sensitivity losses during the pulse or the spectral overlap precludes selective excitation. In this paper, we address this problem with two approaches aimed at facilitating higher precision internuclear distance measurements in systems that are not fully resolved. Namely, (1) we describe an approach for high precision measurements of specific J-couplings using the in-phase anti-phase (IPAP) sequence which is integrated into a non-selective dipolar recoupling technique and (2) we utilize the measured J-couplings to implement a double quantum filter experiment capable of providing the resolution necessary for frequency selective dipolar recoupling techniques without resorting to multidimensional spectroscopy. We illustrate these methods using a 7-peptide segment from the amyloidogenic Sup-35p protein, U-C/N-GNNQQNY, where we have measured 25 of the 27 possible one bond C-C J-couplings.
在涉及均匀碳/氮标记蛋白质的魔角旋转(MAS)实验中,碳 - 碳和碳 - 氮偶极重耦合实验现在经常用于测量直接偶极 - 偶极耦合,这些耦合可约束距离和扭转角并确定分子结构。当距离较短(<4 Å)时,直接耦合主导自旋系统的演化,而碳 - 碳和碳 - 氮J耦合(标量耦合)被忽略。然而,对于结构上有趣的大于4 Å的距离,偶极耦合和J耦合通常具有相当的大小,并且必须包括J耦合的变化以优化实验精度。在光谱分辨率良好的情况下,通过使用频率选择性偶极重耦合方法可以规避这个问题,其中J耦合的影响被重新聚焦。然而,对于具有更多光谱拥挤的较大分子,实现选择性所需的脉冲长度变长,并导致脉冲期间不可接受的灵敏度损失,或者光谱重叠排除了选择性激发。在本文中,我们用两种方法解决这个问题,旨在促进在未完全解析的系统中进行更高精度的核间距离测量。具体而言,(1)我们描述了一种使用同相 - 反相(IPAP)序列高精度测量特定J耦合的方法,该序列被集成到非选择性偶极重耦合技术中;(2)我们利用测量的J耦合来实施双量子滤波实验,该实验能够提供频率选择性偶极重耦合技术所需的分辨率,而无需借助多维光谱学。我们用来自淀粉样蛋白生成的Sup - 35p蛋白的7肽片段U - C/N - GNNQQNY来说明这些方法,在该片段中我们测量了27个可能的一键碳 - 碳J耦合中的25个。