Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Am J Hum Genet. 2024 Nov 7;111(11):2478-2493. doi: 10.1016/j.ajhg.2024.09.008. Epub 2024 Oct 22.
Balancing the tradeoff between quantity and quality of phenotypic data is critical in omics studies. Measurements below the limit of quantification (BLQ) are often tagged in quality control fields, but these flags are currently underutilized in human genetics studies. Extreme phenotype sampling is advantageous for mapping rare variant effects. We hypothesize that genetic drivers, along with environmental and technical factors, contribute to the presence of BLQ flags. Here, we introduce "hypometric genetics" (hMG) analysis and uncover a genetic basis for BLQ flags, indicating an additional source of genetic signal for genetic discovery, especially from phenotypic extremes. Applying our hMG approach to n = 227,469 UK Biobank individuals with metabolomic profiles, we reveal more than 5% heritability for BLQ flags and report biologically relevant associations, for example, at APOC3, APOA5, and PDE3B loci. For common variants, polygenic scores trained only for BLQ flags predict the corresponding quantitative traits with 91% accuracy, validating the genetic basis. For rare coding variant associations, we find an asymmetric 65.4% higher enrichment of metabolite-lowering associations for BLQ flags, highlighting the impact of putative loss-of-function variants with large effects on phenotypic extremes. Joint analysis of binarized BLQ flags and the corresponding quantitative metabolite measurements improves power in Bayesian rare variant aggregation tests, resulting in an average of 181% more prioritized genes. Our approach is broadly applicable to omics profiling. Overall, our results underscore the benefit of integrating quality control flags and quantitative measurements and highlight the advantage of joint analysis of population-based samples and phenotypic extremes in human genetics studies.
在组学研究中,平衡表型数据的数量和质量之间的权衡是至关重要的。低于定量下限(BLQ)的测量值通常在质量控制领域中被标记,但这些标记在人类遗传学研究中尚未得到充分利用。极端表型采样有利于稀有变异效应的映射。我们假设遗传驱动因素,以及环境和技术因素,导致 BLQ 标记的存在。在这里,我们引入了“低量遗传学”(hMG)分析,并揭示了 BLQ 标记的遗传基础,表明遗传发现有额外的遗传信号来源,特别是来自表型极端。我们将我们的 hMG 方法应用于 n=227469 名具有代谢组学特征的英国生物库个体,揭示了 BLQ 标记的超过 5%的可遗传性,并报告了具有生物学意义的关联,例如在 APOC3、APOA5 和 PDE3B 基因座。对于常见变体,仅针对 BLQ 标记训练的多基因评分可以以 91%的准确度预测相应的定量性状,验证了遗传基础。对于罕见编码变异关联,我们发现 BLQ 标记的代谢物降低关联的富集程度不对称地高出 65.4%,突出了具有较大表型极端效应的潜在功能丧失变异的影响。二元 BLQ 标记和相应的定量代谢物测量的联合分析提高了贝叶斯稀有变异聚合测试的功效,导致优先基因的平均数量增加了 181%。我们的方法广泛适用于组学分析。总的来说,我们的研究结果强调了整合质量控制标记和定量测量的益处,并突出了基于人群的样本和表型极端的联合分析在人类遗传学研究中的优势。