Suppr超能文献

理解高剪切湿法制粒过程中粘性粉末的润湿机理及基于机器学习预测颗粒粒度分布。

Understanding of Wetting Mechanism Toward the Sticky Powder and Machine Learning in Predicting Granule Size Distribution Under High Shear Wet Granulation.

机构信息

College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.

College of Chemistry and Chemical Engineering, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Sichuan, China.

出版信息

AAPS PharmSciTech. 2024 Oct 23;25(8):253. doi: 10.1208/s12249-024-02973-w.

Abstract

The granulation of traditional Chinese medicine (TCM) has attracted widespread attention, there is limited research on the high shear wet granulation (HSWG) and wetting mechanisms of sticky TCM powders, which profoundly impact the granule size distribution (GSD). Here we investigate the wetting mechanism of binders and the influence of various parameters on the GSD of HSWG and establish a GSD prediction model. Permeability and contact angle experiments combined with molecular dynamics (MD) simulations were used to explore the wetting mechanism of hydroalcoholic solutions with TCM powder. Machine learning (ML) was employed to build a GSD prediction model, feature importance explained the influence of features on the predictive performance of the model, and correlation analysis was used to assess the influence of various parameters on GSD. The results show that water increases powder viscosity, forming high-viscosity aggregates, while ethanol primarily acted as a wetting agent. The contact angle of water on the powder bed was the largest and decreased with an increase in ethanol concentration. Extreme Gradient Boosting (XGBoost) outperformed other models in overall prediction accuracy in GSD prediction, the binder had the greatest impact on the predictions and GSD, adjusting the amount and concentration of adhesive can control the adhesion and growth of granules while the impeller speed had the least influence on granulation. The study elucidates the wetting mechanism and provides a GSD prediction model, along with the impact of material properties, formulation, and process parameters obtained, aiding the intelligent manufacturing and formulation development of TMC.

摘要

中药制粒受到广泛关注,但对粘性中药粉末的高剪切湿法制粒(HSWG)和润湿机理研究较少,而这些因素对颗粒粒度分布(GSD)有深远影响。本研究探讨了粘合剂的润湿机理以及各种参数对 HSWG 中 GSD 的影响,并建立了 GSD 预测模型。通过渗透率和接触角实验结合分子动力学(MD)模拟研究了含中药粉末的水醇溶液的润湿机理。利用机器学习(ML)建立 GSD 预测模型,特征重要性解释了特征对模型预测性能的影响,相关性分析评估了各种参数对 GSD 的影响。结果表明,水增加了粉末的粘度,形成了高粘度的聚集体,而乙醇主要起润湿剂的作用。水在粉末床的接触角最大,随着乙醇浓度的增加而减小。在 GSD 预测中,极端梯度提升(XGBoost)在整体预测精度方面优于其他模型,粘合剂对预测和 GSD 的影响最大,调整粘合剂的用量和浓度可以控制颗粒的附着力和生长,而叶轮速度对造粒的影响最小。本研究阐明了润湿机理,并提供了 GSD 预测模型,以及获得的材料性质、配方和工艺参数的影响,有助于 TMC 的智能制造和配方开发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验