鉴定一氧化氮介导的坏死性凋亡为帕金森病中的主要死亡途径。
Identification of nitric oxide-mediated necroptosis as the predominant death route in Parkinson's disease.
机构信息
School of Medicine, Shihezi University, Shihezi, 832000, China.
Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832000, China.
出版信息
Mol Biomed. 2024 Oct 24;5(1):44. doi: 10.1186/s43556-024-00213-y.
Parkinson's disease (PD) involves multiple forms of neuronal cell death, but the dominant pathway involved in disease progression remains unclear. This study employed RNA sequencing (RNA-seq) of brain tissue to explore gene expression patterns across different stages of PD. Using the Scaden deep learning algorithm, we predicted neurocyte subtypes and modelled dynamic interactions for five classic cell death pathways to identify the predominant routes of neuronal death during PD progression. Our cell type-specific analysis revealed an increasing shift towards necroptosis, which was strongly correlated with nitric oxide synthase (NOS) expression across most neuronal subtypes. In vitro experiments confirmed that nitric oxide (NO) is a key mediator of necroptosis, leading to nuclear shrinkage and decreased mitochondrial membrane potential via phosphorylation of the PIP1/PIP3/MLKL signalling cascade. Importantly, specific necroptosis inhibitors significantly mitigated neuronal damage in both in vitro and in vivo PD models. Further analysis revealed that NO-mediated necroptosis is prevalent in early-onset Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) and across multiple brain regions but not in brain tumours. Our findings suggest that NO-mediated necroptosis is a critical pathway in PD and other neurodegenerative disorders, providing potential targets for therapeutic intervention.
帕金森病(PD)涉及多种形式的神经元细胞死亡,但疾病进展中涉及的主要途径仍不清楚。本研究采用脑组织 RNA 测序(RNA-seq)技术,探索 PD 不同阶段的基因表达模式。使用 Scaden 深度学习算法,我们预测了神经细胞亚型,并对五个经典细胞死亡途径的动态相互作用进行建模,以确定 PD 进展过程中神经元死亡的主要途径。我们的细胞类型特异性分析显示,细胞坏死的比例逐渐增加,这与大多数神经元亚型中一氧化氮合酶(NOS)的表达呈强相关性。体外实验证实,一氧化氮(NO)是细胞坏死的关键介质,通过 PIP1/PIP3/MLKL 信号级联的磷酸化作用导致核收缩和线粒体膜电位降低。重要的是,特定的细胞坏死抑制剂可显著减轻体外和体内 PD 模型中的神经元损伤。进一步的分析表明,NO 介导的细胞坏死在早发性阿尔茨海默病(AD)和肌萎缩侧索硬化症(ALS)以及多个大脑区域中普遍存在,但不在脑肿瘤中存在。我们的研究结果表明,NO 介导的细胞坏死是 PD 和其他神经退行性疾病的关键途径,为治疗干预提供了潜在的靶点。