Suppr超能文献

神经退行性变的共同因素:一项元研究揭示了多组学尺度上的共享模式。

Common Factors in Neurodegeneration: A Meta-Study Revealing Shared Patterns on a Multi-Omics Scale.

机构信息

Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.

Leibniz Institute for Resilience Research, Leibniz Association, Wallstraße 7, 55122 Mainz, Germany.

出版信息

Cells. 2020 Dec 8;9(12):2642. doi: 10.3390/cells9122642.

Abstract

Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are heterogeneous, progressive diseases with frequently overlapping symptoms characterized by a loss of neurons. Studies have suggested relations between neurodegenerative diseases for many years (e.g., regarding the aggregation of toxic proteins or triggering endogenous cell death pathways). We gathered publicly available genomic, transcriptomic, and proteomic data from 177 studies and more than one million patients to detect shared genetic patterns between the neurodegenerative diseases on three analyzed omics-layers. The results show a remarkably high number of shared differentially expressed genes between the transcriptomic and proteomic levels for all conditions, while showing a significant relation between genomic and proteomic data between AD and PD and AD and ALS. We identified a set of 139 genes being differentially expressed in several transcriptomic experiments of all four diseases. These 139 genes showed overrepresented gene ontology (GO) Terms involved in the development of neurodegeneration, such as response to heat and hypoxia, positive regulation of cytokines and angiogenesis, and RNA catabolic process. Furthermore, the four analyzed neurodegenerative diseases (NDDs) were clustered by their mean direction of regulation throughout all transcriptomic studies for this set of 139 genes, with the closest relation regarding this common gene set seen between AD and HD. GO-Term and pathway analysis of the proteomic overlap led to biological processes (BPs), related to protein folding and humoral immune response. Taken together, we could confirm the existence of many relations between Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis on transcriptomic and proteomic levels by analyzing the pathways and GO-Terms arising in these intersections. The significance of the connection and the striking relation of the results to processes leading to neurodegeneration between the transcriptomic and proteomic data for all four analyzed neurodegenerative diseases showed that exploring many studies simultaneously, including multiple omics-layers of different neurodegenerative diseases simultaneously, holds new relevant insights that do not emerge from analyzing these data separately. Furthermore, the results shed light on processes like the humoral immune response that have previously been described only for certain diseases. Our data therefore suggest human patients with neurodegenerative diseases should be addressed as complex biological systems by integrating multiple underlying data sources.

摘要

神经退行性疾病,如阿尔茨海默病(AD)、帕金森病(PD)、亨廷顿病(HD)和肌萎缩侧索硬化症(ALS),是具有经常重叠症状的异质性、进行性疾病,其特征是神经元丧失。多年来,研究已经表明这些神经退行性疾病之间存在关联(例如,关于毒性蛋白的聚集或引发内源性细胞死亡途径)。我们从 177 项研究和超过 100 万名患者中收集了公开的基因组、转录组和蛋白质组数据,以在三个分析的组学层面上检测神经退行性疾病之间的共同遗传模式。结果表明,在所有情况下,转录组和蛋白质组水平之间的差异表达基因数量非常高,而 AD 和 PD 以及 AD 和 ALS 之间的基因组和蛋白质组数据之间存在显著关系。我们鉴定了一组在四种疾病的多个转录组实验中差异表达的 139 个基因。这些 139 个基因表现出与神经退行性变发展相关的过表达基因本体论(GO)术语,例如对热和缺氧的反应、细胞因子和血管生成的正调节以及 RNA 分解代谢过程。此外,通过分析这 139 个基因的所有转录组研究,对这四个分析的神经退行性疾病(NDD)进行聚类,得到了这一组基因的平均调节方向,其中 AD 和 HD 之间的关系最为密切。对蛋白质组重叠的 GO-Term 和途径分析导致了与蛋白质折叠和体液免疫反应相关的生物学过程(BPs)。总的来说,通过分析这些交叉点出现的途径和 GO-Term,我们可以在转录组和蛋白质组水平上确认阿尔茨海默病、帕金森病、亨廷顿病和肌萎缩侧索硬化症之间存在许多关系。对所有四个分析的神经退行性疾病的转录组和蛋白质组数据的连接的重要性以及结果与导致神经退行性变的过程的惊人关系表明,同时探索许多研究,包括同时分析不同神经退行性疾病的多个组学层面,具有新的相关见解,而不是单独分析这些数据。此外,这些结果揭示了体液免疫反应等以前仅在某些疾病中描述过的过程。因此,我们的数据表明,应该将患有神经退行性疾病的人类患者视为通过整合多个潜在数据源的复杂生物系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2726/7764447/399b0ee97939/cells-09-02642-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验